K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

\(M=\)như trên

\(=>M=4x^2-4x+1+x+\frac{1}{4x}+2010\)

\(=>M=\left(4x^2-4x+1\right)+\left(x+\frac{1}{4x}\right)+2010\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có: 

\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=2\sqrt{\frac{1}{4}}=1\)

\(=>M=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2010\ge0+1+2010=2011\\ \)

=>minM=2011 khi x=\(\frac{1}{2}\)

1 tháng 1 2020

Lâu rồi không show cách này:)

Sửa đề: \(M=4x^2-3x+\frac{1}{4x}+2017\)

Ta có: \(M=\frac{\left(4x+1\right)\left(2x-1\right)^2}{4x}+2017\ge2017\)

Đẳng thức xảy ra khi \(x=\frac{1}{2}\)

31 tháng 12 2019

Em kiểm tra lại đề nhé! Hàm số của biểu thức : \(M=4^2-3x+\frac{1}{4x}+2017\) có đồ thị đi xuống nên sẽ không tồn tại GTNN em nhé!

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:

Áp dụng BĐT AM-GM cho các số dương ta có:
$3x^2+\frac{3}{4}\geq 3x$

$x^2+\frac{1}{8x}+\frac{1}{8x}\geq 3\sqrt[3]{x^2.\frac{1}{8x}.\frac{1}{8x}}=\frac{3}{4}$

Cộng theo vế:

$\Rightarrow 4x^2+\frac{1}{4x}+\frac{3}{4}\geq 3x+\frac{3}{4}$

$\Rightarrow 4x^2+\frac{1}{4x}\geq 3x$

$\Rightarrow M=4x^2+\frac{1}{4x}-3x+2011\geq 2011$

Vậy $M_{\min}=2011$ khi $x=\frac{1}{2}$

NV
5 tháng 4 2020

Điều kiện là x>0 hay x<0 bạn?

Với \(x< 0\) thì ko có min hay max đâu

9 tháng 8 2016

(4x-4x+1) + (x+ \(\frac{1}{4x}\)-2)+ 2016=(2x-1)2 +(√x  -√ \(\frac{1}{4x}\))2 >=2016 đạt giá trị nhỏ nhất khi x=0,5

6 tháng 7 2019

a, Từ x = 7 - 4 3  tìm được  x = 2 - 3 . Thay vào Q và tính ta được Q =  3 - 3 1 + 3

b, P =  3 x + 3 9 - x

c, Tìm được  M = P Q = - 3 x + 3

Giải  M ≥ - 2 3  ta tìm được  9 4 ≤ x ≠ 9

d, Tìm được A =  x + 7 x + 3

Ta có A = x + 1 + 6 x + 3 ≥ 2 x + 6 x + 3 = 2

Từ đó đi đến kết luận A m i n = 2 => x = 1

* Cách khác: A = x + 7 x + 3 = x - 3 + 16 x + 3

=  x + 3 + 16 x + 3 - 6 ≥ 2 16 - 6 = 2

=> Kết luận

AH
Akai Haruma
Giáo viên
29 tháng 3 2020

Lời giải:
Áp dụng BĐT AM-GM cho các số dương ta có:

\(4x^2+1\geq 4x\)

\(\Rightarrow M= 4x^2-3x+\frac{1}{4x}+2011\geq x+\frac{1}{4x}+2010\)

Tiếp tục áp dụng BĐT AM-GM: \(x+\frac{1}{4x}\geq 1\)

\(\Rightarrow M\geq x+\frac{1}{4x}+2010\geq 2011\)

Vậy $M_{\min}=2011$. Giá trị này đạt tại $x=\frac{1}{2}$

5 tháng 7 2020

\(P=\left(4x^2\right)-3x+\left(\frac{1}{4x}\right)+2015\)

\(=\left(4x^2-4x+1\right)+x+\frac{1}{4x}+2014\)

\(=\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\)

Áp dụng bđt Cauchy cho 2 số không âm ;

\(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)

\(< =>\left(2x-1\right)^2+\left(x+\frac{1}{4x}\right)+2014\ge0+1+2014=2015\)

Vậy \(Min_p=2015\)xảy ra khi \(x=\frac{1}{2}\)