Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x \(\in\) {2;1;0; -1; -2}
b) x \(\in\) {...; -10; -9; 9;10;...}
c) x \(\in\) {-1; -2; -3; -4; 0; 1; 2;3;4}
d) x \(\in\) {...; -9; -8; -7; 7;8;9;...}
a. Ta có: |x| < 3 ⇔ -3 < x < 3
Các giá trị trong tập hợp A là nghiệm của bất phương trình là:
-2; -1; 0; 1; 2
b. Ta có: |x| > 8 ⇔ x > 8 hoặc x < -8
Các giá trị trong tập hợp A là nghiệm của bất phương trình là:
-10; -9; 9; 10
c. Ta có: |x| ≤ 4 ⇔ -4 ≤ x ≤ 4
Các số trong tập hợp A là nghiệm của bất phương trình là:
-4; -3; -2; -1; 0; 1; 2; 3; 4
d. Ta có: |x| ≥ 7 ⇔ x ≥ 7 hoặc x ≤ -7
Các số trong tập hợp A là nghiệm của bất phương trình là:
-10; -9; -8; -7; 7; 8; 9; 10
Ta có: |x| < 3 ⇔ -3 < x < 3
Các giá trị trong tập hợp A là nghiệm của bất phương trình là:
-2; -1; 0; 1; 2
Ta có: |x – 3| > 5
⇒ (x-3 > 5) hoặc (x-3 < -5)
⇔ (x > 8) hoặc (x < -2)
Các số trong tập hợp A là nghiệm của bất phương trình là:
10; 9; -3; -4; -5; -6; -7; -8; -9; -10
Ta có: |x| ≥ 7 ⇔ x ≥ 7 hoặc x ≤ -7
Các số trong tập hợp A là nghiệm của bất phương trình là:
-10; -9; -8; -7; 7; 8; 9; 10
Câu 1 : C
Câu 2 : B
Câu 3 : D
Câu 4 : đổi dấu
Câu 5 : a) 2x(x+2) - 3(x+2) = 0
<=> (x+2)(2x-3)=0
<=> \(\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=-2\\x=\frac{3}{2}\end{matrix}\right.\)
b) \(\frac{5}{x-3}+\frac{4}{x+3}=\frac{x-5}{x^2-9}\) Mẫu chung là x2-9 = (x-3)(x+3)
\(\Rightarrow5\left(x+3\right)+4\left(x-3\right)=x-5\)
\(\Leftrightarrow5x+15+4x-12=x-5\)
\(\Leftrightarrow9x+3=x-5\\ \Leftrightarrow8x=-8\\ \Leftrightarrow x=-1\)
Ta có: |x| ≤ 4 ⇔ -4 ≤ x ≤ 4
Các số trong tập hợp A là nghiệm của bất phương trình là:
-4; -3; -2; -1; 0; 1; 2; 3; 4
Ta có: |x| > 8 ⇔ x > 8 hoặc x < -8
Các giá trị trong tập hợp A là nghiệm của bất phương trình là:
-10; -9; 9; 10
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
a: |x-2|<=3
=>x-2>=-3 và x-2<=3
=>-1<=x<=5
mà x thuộc A
nên \(x\in\left\{-1;0;1;2;3;4;5\right\}\)
b: |x-3|>5
=>x-3<-5 hoặc x-3>5
=>x>8 hoặc x<-2
mà x thuộc A
nên \(x\in\left\{-10;-9;...;-3;9;10\right\}\)