K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Đây là trắc nghiệm đúng không. Vậy thì 4 đáp án a,b,c,d đâu rồi. Không thể tính ra số cụ thể đâu. Nhưng có thể biểu diễn theo biến.

13 tháng 11 2017

Giả thiết của đề bài như bị thiếu.

16 tháng 12 2018

Đáp án D.

Ta có

Khi đó

Đồng nhất hệ số, ta được

2 tháng 1 2019

9 tháng 7 2018

NV
11 tháng 4 2022

Vì \(f\left(b\right)\) đồng biến nên nếu \(f\left(-8\right)>0\Rightarrow f\left(b\right)>0;\forall b>-8\)

\(\Rightarrow f\left(b\right)\le0\) có nhiều nhất 3 nghiệm nguyên thuộc (-12;12) là -11;-10;-9 (ktm yêu cầu đề bài)

Do đó \(f\left(-8\right)\le0\)

Hiểu đơn giản thì đếm từ -11 trở đi thêm 4 số nguyên ta sẽ chạm tới mốc -8

11 tháng 4 2022

Con vẫn không hiểu lắm ạ, nếu đếm từ 11 trở lui có được không ạ?

5 tháng 7 2022

 

.

 

5 tháng 7 2022

undefined

AH
Akai Haruma
Giáo viên
14 tháng 11 2021

Lời giải:
Áp dụng BĐT Cô-si:

\(2=a+b=\frac{a}{2}+\frac{a}{2}+b\geq 3\sqrt[3]{\frac{a^2b}{4}}\)

\(\Rightarrow \frac{2}{3}\geq \sqrt[3]{\frac{a^2b}{4}}\Rightarrow \frac{8}{27}\geq \frac{a^2b}{4}\)

\(\Leftrightarrow a^2b\leq \frac{32}{27}\Leftrightarrow P\leq \frac{32}{27}\)

Vậy $P_{\max}=\frac{32}{27}$. Giá trị này đạt tại $\frac{a}{2}=b=\frac{2}{3}$

 

4 tháng 3 2017