K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

a) Với giả thiết ở đề bài, ta có thể tính được r từ đó tính được diện tích mặt cầu gần bằng \(26cm^2\)

b) Tương tự câu a, ta tính được thể tích hình nón là \(7,9cm^3\)

26 tháng 1 2018

a, Tính được r = 1,44cm Þ Smc = 4p r 2  = 26,03 c m 2

b, Ta có  V c = 4 3 πR 2 = 15 , 8 cm 3 => R = 1,56cm

=>  V h n = 1 3 πR 2 h ≈ 2 , 53 πcm 3

20 tháng 5 2017

4 tháng 4 2018

29 tháng 11 2018

Thể tích hình nón có bán kính đáy r, chiều cao 2r

Giải bài 45 trang 130 SGK Toán 9 Tập 2 | Giải toán lớp 9

18 tháng 8 2018

a) Hình cầu bán kính r, vậy thể tích của nó là Giải bài 45 trang 130 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) Hình trụ có bán kính đáy bằng r và chiều cao bằng 2r

Vậy thể tích của nó là:  V 1 = π r 2 ⋅ 2 r = 2 π r 3

c) Thể tích hình trụ trừ đi thể tích hình cầu là:

Giải bài 45 trang 130 SGK Toán 9 Tập 2 | Giải toán lớp 9

d) Thể tích hình nón có bán kính đáy r, chiều cao 2r

Giải bài 45 trang 130 SGK Toán 9 Tập 2 | Giải toán lớp 9

e) Từ các kết quả trên suy ra: Thể tích hình nón "nội tiếp" trong một hình trụ thì bằng thể tích hình trụ trừ đi thể tích hình cầu nội tiếp trong hình trụ ấy.

Hoặc: Thể tích hình trụ bằng tổng thể tích hình nón và hình cầu nội tiếp hình trụ.  

9 tháng 6 2017

a) Giá trị gần đúng của h là : 10,5 cm

b) Giá trị của r là : 24 cm

31 tháng 7 2017

Tính được h =  6 2 cm

1 tháng 2 2018

Đáp án D

Gọi l là độ dài đường sinh của hình nón.

Vì bán kính hình cầu và bán kính đáy của hình nón bằng nhau nên từ giả thiết ta có:

9 tháng 10 2018

Đáp án D

Gọi l là độ dài đường sinh của hình nón.

Vì bán kính hình cầu và bán kính đáy của hình nón bằng nhau nên từ giả thiết ta có: