K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2019

\(\Rightarrow2a^2+2b^2+2c^2-2ab-2ac-\)\(2bc\ge0\)

\(\Rightarrow a^2-2ab+b^2+a^2-2ac+c^2\)\(+b^2-2bc+c^2\ge0\)

\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\)( luôn đúng với mọi a,b,c) đpcm

chúc bạn học tốt. mk cũng 2k5 nhé, kb mk

29 tháng 3 2019

Điều cần chứng minh tương đương với:

\(\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\) (đúng)

Suy ra đpcm.

28 tháng 3 2018

        \(\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow\)\(a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(a=b\)

     \(a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\ge0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

Dấu "=" xảy ra   \(\Leftrightarrow\)\(a=b=c\)

1 tháng 11 2015

a^2-b^2-c^2-ab-ac-bc

=2a^2-2b^2-2c^2-2ab-2ac-2bc

=(a^2-2ab+b^2)+(b^2-2bc+c^2)+(a^2-2ac+c^2)

=(a-b)^2+(b-c)^2+(a-c)^2

Ta có (a-b)^2 lớn hơn 0 hoặc bằng 0.        (b-c)^2 lớn hơn hoặc bằng 0

           (a-c)^2 lớn hơn hoặc bằng 0

=>(a-b^2+(b-c)^2+(a-c)^2 lớn hơn hoặc bằng 0

vậy a^2+b^2+c^2-ab-ac-bc lớn hơn hoặc bằng 0

           

10 tháng 3 2019

bạn trần ngọc mai sai rồi vì dấu "=" xảy ra <=>a=b=c mà đề bài cho a,b,c khác nhau mà bạn.

a: Ta có: \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

b: ta có: \(x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

10 tháng 3 2018

ta có: \(a^2+b^2+c^2=1\Rightarrow-1\le|a|\le1.\),tương tự với b và c

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge0\)\(\Leftrightarrow abc+\left(a+b+c+ab+ac+bc+1\right)\ge0.\left(1\right)\)

Ta thấy \(\left(a+b+c+1\right)^2=a^2+b^2+c^2+2ab+2bc+2ac+2a+2b+2c+1.\)

                                                     \(=2+2a+2b+2c+2ab+2bc+2ac\)

                                                        \(=2\left(1+a+b+c+ab+ac+bc\right)\ge0\)

\(\Rightarrow1+a+b+c+ab+bc+ac\ge0\left(2\right)\)

Cộng vế theo vế của (1) và (2) Suy ra \(abc+2\left(1+a+b+c+ab+ac+bc\right)\ge0\left(đpcm\right)\)

2 tháng 4 2017

Lại copy!!!

Giải:

Áp dụng BĐT Bunhiacopski

Xét cặp số \(\left(1,1,1\right)\)\(\left(a,b,c\right)\) ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(1.a+1.b+1.c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\) (Đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

2 tháng 4 2017


Chúng ta có thể dễ dàng bất đức thức này bằng vài bước suy luận cơ bản như sau:

Chứng minh bất đẳng thức: a2 + b2 + c2 ≥ ab + bc + ca

Điều này luôn đúng nên ta có điều phải chứng minh. Đẳng thức xảy ra khi a = b = c.

a) Xét hiệu a2+b2+c2+d2 -(a+b+c+d)

=a(a-10+b(b-1)+c(c-1)+d(d-1) \(⋮\)2

mà a2+b2+c2+d2 \(\ge\)0

=> a+b+c+d \(⋮\)2

hay a+b+c+d là hợp số

AH
Akai Haruma
Giáo viên
17 tháng 8 2021

Tham khảo lời giải tại đây:

https://hoc24.vn/cau-hoi/cho-abcd-la-cac-so-tu-nhien-thoa-man-doi-1-khac-nhau-va-a2d2b2c2tchung-minh-abcd-va-acbd-khong-the-dong-thoi-la-so-nguyen-to.1540844491932

3 tháng 4 2018

Ta có a^2+b^2+c^2=1

ma a^2 ,b^2,c^2>=0

=> a,b,c>-1

=> (a+1)(b+1)(c+1)>=0

=> 1+ab+bc+ac+a+b+c+abc>=0(1)

 lai co (a+b+c+1)^2=a^2+b^2+c^2+2a+2b+2c+2ab+2bc+2ac+1

                               =2( 1+ab+bc+ac+a+b+c)>=0(2)

tu 1 va 2 => dpcm