Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A là số nguyên thì 4n-2\(⋮\)n-2
=>n-2\(⋮\)n-2
=>4\(⋮\)n-2
=>n-2\(\in\)Ư(4)
hay n-2\(\in\){1;-1;2;-2;4;-4}
=>n={3;1;4;0;6;-2}
Cho A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
Với giá trị nào m,n thì A ≥ 0
A= ( 5m^2 - 8m^2 - 9m^2)( -n^3 + 4n^3)
A= -12m^2/3n^3
= -4m^2/n^3
do m^2>=0 với mọi m
nên A>=0
=> n<0 d0 -4<0
vậy A ≥ 0 khi n<0 vầ m bất kì
\(A=\frac{4n-2}{n-2}=\frac{4n-8+6}{n-2}=\frac{4\left(n-2\right)+6}{n-2}=4+\frac{6}{n-2}\)
Để A nguyên thì \(\frac{6}{n-2}\)nguyên=>6 chia hết cho n-2 hay n-2\(\in\)Ư(6)
=>n-2\(\in\){-6;-3;-2;-1;1;2;3;6}
=>n\(\in\){-4;-1;0;1;3;4;5;8}
Để A là số nguyên thì 4n-2 chia hết cho n-2
\(Tacó\)
\(4n-3⋮n+1\Rightarrow4\left(n+1\right)⋮n+1\Rightarrow4n+4⋮n+1\)
\(\Rightarrow4n+4-\left(4n-3\right)⋮n+1\Rightarrow7⋮n+1\Rightarrow n+1\in\left\{\pm1;\pm7\right\}\)
\(\Rightarrow n\in\left\{-2;0;6;-8\right\}\)
b, \(K=\frac{2}{3+4n}\)
\(\Rightarrow GTLN\left(K\right)\Leftrightarrow n=0\Rightarrow\frac{2}{3+4n}=\frac{2}{3}\Rightarrow GTLN\left(K\right)=\frac{2}{3}\)
\(4^{n+3}+4^{n+2}-4^n\)
\(=4^n.64+4^n.16-4^n\)
\(=4^n\left(64+16-1\right)\)
\(=4^n.81\)
Với n = 2k+1
=> 42k+1.81=(...4)
Với n = 2k
=> 16k.81=(...6)