K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2023

`y'=3x^2+4mx=0<=>[(x=0),(x=-4/3m):}`    `(m ne 0)`

                                       `=>[(y=-m),(y=32/27 m^3-m):}`

          `=>A(0;-m),B(-4/3m;32/27 m^3-m)`

Để `\triangle OAB` vuong tại `O`

  `=>\vec{OA}.\vec{OB}=0`

`<=>(0;-m).(-4/3m;32/27 m^3 -m)=0`

`<=>0.(-4/3m)-m(32/27 m^3-m)=0`

`<=>m^2(32/27m^2 -1)=0`

`<=>[(m=0(L)),(m=+-[3\sqrt{6}]/8 (t//m)):}`

Vậy `m=+-[3\sqrt{6}]/8`.

4 tháng 5 2017

+ Đạo hàm y’ = 6x2 – 18x+ 12

+ Tọa độ  hai điểm cực trị của đồ thị hàm số là A( 1; 5+m) và B( 2; 4+ m) 

uCh73AX4JjBu.png

O ; A và B không thẳng hàng nên – 4-m≠ 2 hay m≠ - 6

Chu vi của tam  giác OAB là:

QEfCu8QiP6gv.png  

Dấu bằng xảy ra khi và chỉ khi JHbmKMHlX7b6.png  cùng hướng mUZMrUUNzJ33.png.

Vậy chu vi tam giác OAB  nhỏ nhất bằng (√10 + √2)  khi m= -14/ 3.

Chọn C.

25 tháng 11 2017

Chọn D

22 tháng 4 2016

Ta có \(y=4x^3-4mx=4x\left(x^2-m\right)=0\Leftrightarrow x=0\) hoặc \(x^2=m\)

Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow\) phương trình y' = 0 có 3 nghiệm phân biệt và y' đổi dấu khi x đi qua các nghiệm đó <=> m > 0. Khi đó 3 điểm cực trị của đồ thị hàm số là :

\(A\left(0;m-1\right);B\left(-\sqrt{m};m^2+m-1\right);C\left(\sqrt{m};-m^2+m-1\right)\)

a) Ta có \(S_{\Delta ABC}=\frac{1}{2}\left|y_B-y_A\right|.\left|y_C-y_B\right|=m^2\sqrt{m}\)

              \(AB=AC=\sqrt{m^4+m};BC=2\sqrt{m}\)

              \(R=\frac{AB.AC.BC}{4S_{\Delta ABC}}=1\Leftrightarrow\frac{\left(m^4+m\right)2\sqrt{m}}{4m^2\sqrt{m}}=1\)

                                            \(\Leftrightarrow m^3-2m+1=0\Leftrightarrow m=1\) hoặc \(m=\frac{\sqrt{5}-1}{2}\)

Vậy \(m=1;m=\frac{\sqrt{5}-1}{2}\) là giá trị cần tìm

b) Vì B, C đối xứng nhau qua trục tung nên BC luôn vuông góc OA

Do đó O là trực tâm tam giác ABC khi và chỉ khi \(\overrightarrow{OB}.\overrightarrow{AC}=0\)

\(\overrightarrow{OB}\left(-\sqrt{m};-m^2+m-1\right);\overrightarrow{AC}\left(\sqrt{m};-m^2\right)\)

Suy ra \(-m-m^2\left(-m^2+m-1\right)=0\Leftrightarrow m\left(-m^3+m^2-m+1\right)=0\)

                                                             \(\Leftrightarrow m\left(m-1\right)\left(m^2+1\right)=0\Leftrightarrow m=0\) hoặc m = 1

Vậy m = 0 hoặc m = 1 là giá trị cần tìm

c) Rõ ràng tam giác ABC cân tại A và truyên tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm  của tam giác ABC

<=> \(y_A+2y_B=0\)

\(\Leftrightarrow m-1+2\left(-m^2+m-1\right)=0\)

\(\Leftrightarrow2m^2-3m+3=0\) vô nghiệm

Vậy không tồn tai giá trị m thỏa mãn yêu cầu bài toán

14 tháng 1 2020

bn ơi cho mk hỏi cái công thức tính S tam giác ABC=1/2|yB-yA|.|yC-yB| ở đâu vậy ạ

 

19 tháng 1 2019

Chọn C

Ta có  y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )

Hàm số (1) có cực trị thì PT y ' = 0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0  có 2 nhiệm phân biệt

Khi đó, điểm cực đại A ( m - 1 ; 2 - 2 m ) và điểm cực tiểu  B ( m + 1 ; - 2 m )

Ta có  O A = 2 O B ⇔ m 2 + 6 m + 1 = 0

 

 

9 tháng 8 2017

Ta có y’ = 3x2- 6mx + 3( m2-1).

Hàm số đã cho  có cực trị thì phương trình y’ =0  có 2 nghiệm phân biệt

⇔ x 2 - 2 m x + m 2 - 1 = 0   có 2 nghiệm phân biệt ⇔ ∆ = 1 > 0 , ∀ m   

Khi đó, điểm cực đại  A( m-1; 2-2m) và điểm cực tiểu  B( m+1; -2-2m)

Ta có 

Tổng hai giá trị này là -6.

Chọn C.

25 tháng 5 2018

Ta có đạo hàm 

Để hàm số có 3 điểm cực trị khi và chỉ khi m≠0.

 Khi đó, tọa độ 3 điểm cực trị là:  A( 0; m4+ 3) ; B( m; 3)  và C( -m; 3) là ba điểm cực trị.

Vì yA> yB= yC n ên yêu cầu bài toán; tứ giác ABOC nội tiếp đường tròn ( C)

Và A B = A C O B = O C  suy ra OA là đường trung trực của đoạn thẳng BC.

 Suy ra OA là đường kính của đường tròn C ⇒ O B → . A B → = 0           ( 1 )  

Mà 

suy ra 

 

Chọn C.

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$y'=3x^2-6mx+3(m^2-1)=0$

$\Leftrightarrow x^2-2mx+m^2-1=0$

$\Leftrightarrow x=m+1$ hoặc $x=m-1$

Với $x=m+1$ thì $y=-2m-2$. Ta có điểm cực trị $(m+1, -2m-2)$

Với $x=m-1$ thì $y=2-2m$. Ta có điểm cực trị $m-1, 2-2m$

$f''(m+1)=6>0$ nên $A(m+1, -2m-2)$ là điểm cực tiểu

$f''(m-1)=-6< 0$ nên $B(m-1,2-2m)$ là điểm cực đại 

$BO=\sqrt{2}AO$

$\Leftrightarrow BO^2=2AO^2$

$\Leftrightarrow (m-1)^2+(2-2m)^2=2(m+1)^2+2(-2m-2)^2$

$\Leftrightarrow m=-3\pm 2\sqrt{2}$

 

12 tháng 10 2019

Chọn D

Ta có  y ' = - 3 x 2 + 3 m

y ' = 0 ⇔ x 2 - m = 0 (*)

Đồ thị hàm số (1) có 2 điểm cực trị 

⇔ P T ( * )  có 2 nghiệm phân biệt  ⇔ m > 0 ( * * )

Khi đó 2 điểm cực trị

Tam giác OAB vuông tại O

V ậ y   m = 1 2