K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=-20\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4a=-28\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=-13\end{matrix}\right.\)

b: Vì (d)//y=-2/3x+1 nên a=-2/3

Vậy: (d): y=-2/3x+b

Thay x=4 và y=-3 vào (d), ta được:

b-8/3=-3

hay b=-1/3

28 tháng 3 2017

Đồ thị hàm số song song với đường thẳng y = 2x + 1 nên a = 2.

Đồ thị hàm số đi qua điểm M(1; 4) nên 4 = a.1 + b suy ra b = 2

Hay S = a + b = 4

Chọn A.

19 tháng 1 2016

Khi m = 2 : y = x + 5

TXĐ : D = R.

Tính biến thiên :

  • a = 1 > 0 hàm số đồng biến trên R.

bảng biến thiên :

x

-∞

 

+∞

y

-∞

+∞

Bảng giá trị :

x

0

-5

y

5

0

Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).

b/(dm) đi qua điểm A(4, -1) :

4 = (m -1)(-1) +2m +1

<=> m = 2

3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1

4.(dm) đi qua điểm  cố định M(x0, y0) :

Ta được  : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.

<=> (x0 + 2) m = y0 – 1 + x0(*)

(*) luôn đúng mọi m khi :

x0 + 2= 0 và  y0 – 1  + x0 = 0

<=> x0 =- 2  và  y0 = 3

Vậy : điểm  cố định M(-2, 3)

 

24 tháng 7 2017

Đồ thị hàm số vuông góc với đường thẳng y = 4x + 1 nên 4.a = -1 hay  

Đồ thị hàm số đi qua điểm N(4; -1) nên -1 = a.4 + b hay b = 0

Suy ra P = ab = 0

Chọn A.

16 tháng 2 2019

Đáp án A

7 tháng 12 2016

Toán lớp 9.

31 tháng 10 2019

Đáp án A

12 tháng 7 2018

a) f(x) = 2x.(x+2) - (x+2)(x+1) = 2x2 + 4x - (x2 + 3x + 2) = x2 + x - 2

Tam thức x2 + x – 2 có hai nghiệm x1 = -2 và x2 = 1, hệ số a = 1 > 0.

Vậy:

+ f(x) > 0 nếu x > x2 = 1 hoặc x < x1 = -2, hay x ∈ (-∞; -2) ∪ (1; + ∞)

+ f(x) < 0 nếu x1 < x < x2 hay x ∈ (-2; 1)

+ f(x) = 0 nếu x = -2 hoặc x = 1.

b)

* Hàm số y = 2x(x+2) = 2x2 + 4x có đồ thị (C1) là parabol có:

+ Tập xác định: D = R

+ Đỉnh I1( -1; -2)

+ Trục đối xứng: x = -1

+ Giao điểm với trục tung tại gốc tọa độ.

+ Giao điểm với trục hoành tại O(0; 0) và M(-2; 0).

+ Bảng biến thiên:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Hàm số y = (x + 2)(x+1) = x2 + 3x + 2 có đồ thị (C2) là parabol có:

+ Tập xác định D = R.

+ Đỉnh Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Trục đối xứng: x = -3/2

+ Giao với trục tung tại D(0; 2)

+ Giao với trục hoành tại M(-2; 0) và E(-1; 0)

+ Bảng biến thiên

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Đồ thị:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

* Tìm tọa độ giao điểm:

Cách 1: Dựa vào đồ thị hàm số:

Nhìn vào đồ thị thấy (C1) cắt (C2) tại A(1; 6) và B ≡ M(-2; 0)

Cách 2: Tính:

Hoành độ giao điểm của (C1) và (C2) là nghiệm của phương trình:

2x(x + 2) = (x + 2)(x + 1)

⇔ (x + 2).2x – (x + 2)(x + 1) = 0

⇔ (x + 2).(2x – x – 1) = 0

⇔ (x + 2).(x – 1) = 0

⇔ x = -2 hoặc x = 1.

+ x = -2 ⇒ y = 0. Ta có giao điểm B(-2; 0)

+ x = 1 ⇒ y = 6. Ta có giao điểm A(1; 6).

c)

+ Đồ thị hàm số y = ax2 + bx + c đi qua điểm A(1; 6) và B(-2; 0)

⇔ tọa độ A và B thỏa mãn phương trình y = ax2 + bx + c

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

+ Ta có bảng biến thiên của hàm số y = ax2 + bx + c:

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Nhận thấy y đạt giá trị lớn nhất bằng 8

Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Thay b = 2 + a và c = 4 – 2a vào biểu thức 4ac – b2 = 32a ta được:

4.a.(4 – 2a) – (2 + a)2 = 32a

⇔ 16a – 8a2 – (a2 + 4a + 4) = 32a

⇔ 16a– 8a2 – a2 – 4a - 4 – 32a = 0

⇔ -9a2 - 20a - 4 = 0

⇔ a = -2 hoặc a = -2/9.

Nếu a = -2 ⇒ b = 0, c = 8, hàm số y = -2x2 + 8

Nếu a = -2/9 ⇒ b = 16/9, c = 40/9, hàm số Giải bài 6 trang 160 SGK Đại Số 10 | Giải toán lớp 10

17 tháng 8 2016

Ta có : y = -2x+k(x+1) = x(k-2) + k

a) Đths đi qua gốc tọa độ thì có dạng y = ax (a khác 0) , do đó để y = x(k-2)+k đi qua gốc tọa độ thì k-2 = 0 => k = 2

b) đths đi qua điểm M(-2;3) nên \(3=-2.\left(-2\right)+k\left(-2+1\right)\Leftrightarrow k=1\)

c) để đths y = x(k-2)+k song song với đường thằng y = \(\sqrt{2}\)x thì a = a' , b khác b', tức là 

\(\begin{cases}k-2=\sqrt{2}\\k\ne0\end{cases}\) \(\Rightarrow\begin{cases}k=2+\sqrt{2}\\k\ne0\end{cases}\) 

3 tháng 10 2020

cho mình hỏi tại sao từ y = -2x+k(x+1) lại = x(k-2) +k vậy ạ?

0