\(P=\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

giải bằng Bunhiaskopki nha bạn, search gg

1 tháng 4 2022

Ta có P \(\le\dfrac{1^2+\left(\sqrt{x-1}\right)^2}{2}+\dfrac{2^2+\left(\sqrt{y-4}\right)^2}{2}+\dfrac{3^2+\left(\sqrt{z-9}\right)^2}{2}\)

\(=\dfrac{1+x-1+4+y-4+9+z-9}{2}=\dfrac{x+y+z}{2}=\dfrac{28}{2}=14\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\2=\sqrt{y-4}\\3=\sqrt{z-9}\end{matrix}\right.\Leftrightarrow x=2;y=8;z=18\)(tm) 

31 tháng 10 2020

Áp dụng bất đẳng thức AM-GM:

\(yz\sqrt{x-1}=yz\sqrt{\left(x-1\right)1}\le yz\frac{\left(x-1\right)+1}{2}=\frac{xyz}{2}\);

\(zx\sqrt{y-4}=\frac{zx}{2}\sqrt{\left(y-4\right)4}\le\frac{zx}{2}\frac{\left(y-4\right)+4}{2}=\frac{xyz}{4}\);

\(xy\sqrt{z-9}=\frac{xy}{3}\sqrt{\left(z-9\right)9}\le\frac{xy}{3}\frac{\left(z-9\right)+9}{2}=\frac{xyz}{6}\)

\(\Rightarrow\frac{yz\sqrt{x-1}+zx\sqrt{y-4}+xy\sqrt{z-9}}{xyz}\le\frac{\frac{xyz}{2}+\frac{xyz}{4}+\frac{xyz}{6}}{xyz}\)\(=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\)

Vậy \(P_{max}=\frac{11}{12}\)

Dấu "=" xảy ra khi \(x=2;y=8;z=18\)

29 tháng 8 2021

Giá trị nhỏ nhất là căn 82

29 tháng 8 2021

\(\dfrac{1}{3}\)

31 tháng 10 2020

\(P=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-4}}{y}+\frac{\sqrt{z-9}}{z}\).

Áp dụng BĐT AM - GM ta có: \(x=x-1+1\geq 2\sqrt{x-1};y=y-4+4\geq 4\sqrt{y-4};z=z-9+9\geq 6\sqrt{z-9}\).

Do đó \(P\le\frac{1}{2}+\frac{1}{4}+\frac{1}{6}=\frac{11}{12}\).

...

17 tháng 5 2016

Ta sẽ chứng minh

\(\sqrt{x^2+1}+2\sqrt{x}\le\frac{2+\sqrt{2}}{2}\left(x+1\right)\)

\(\Leftrightarrow\left(\sqrt{x^2+1}+2\sqrt{x}\right)^2\le\frac{3+2\sqrt{2}}{2}\left(x+1\right)^2\)

\(\Leftrightarrow\frac{1+2\sqrt{2}}{2}\left(x^2+1\right)-4\sqrt{x\left(x^2+1\right)}+\left(2\sqrt{2}-1\right)x\ge0\)

\(\Leftrightarrow\left(\sqrt{x^2+1}-\sqrt{2x}\right)\left(\frac{1+2\sqrt{2}}{2}\sqrt{x^2+1}-\frac{4-\sqrt{2}}{2}\sqrt{x}\right)\ge0\)

BĐT trên luôn đúng do \(x^2+1\ge2x\)

Vậy ta có:\(\text{∑}\sqrt{x^2+1}+2\sqrt{x}\le\text{∑}\frac{2+\sqrt{2}}{2}\left(x+1\right)\le6+3\sqrt{2}\)

Đẳng thức xảy ra khi x=y=z=1

17 tháng 5 2016

tích trước trả lời sau

NM
28 tháng 7 2021

Áp dụng bất đẳng thức Bunhia ta có :

\(\left(\sqrt{1+x^2}+\sqrt{2x}\right)^2\le2\left(1+x^2+2x\right)=2\left(x+1\right)^2\text{ nên }\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

tương tự ta có : \(\hept{\begin{cases}\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\\\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\end{cases}}\)

Nên \(A\le\sqrt{2}\left(x+y+z+3\right)+\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\left(2-\sqrt{2}\right)\)

\(\le6\sqrt{2}+\left(2-\sqrt{2}\right)\sqrt{3\left(x+y+z\right)}\le6\sqrt{2}+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)

dấu bằng xảy ra khi x=y=z=1

29 tháng 7 2021

ủa bạn oi nó là \(\sqrt{2}x\)mà có phai\(\sqrt{2x}dau\)

19 tháng 5 2018

GTLN hay GTNN bạn ơi ;(

19 tháng 5 2018

GTNN bạn

5 tháng 12 2019

\(Q=\Sigma\frac{x^4}{x^2+\sqrt{xy.zx}}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+xy+yz+zx}\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x=y=z=1