K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

\(Q=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)

3ab(a+b) chia hết cho 6 vs mọi a,b nên muốn Q chia hết cho 6 <=> a+b chia hết cho 6

7 tháng 11 2017

ta có: \(a^3+b^3+c^3-\left(a+b+c\right)=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right).\)

                                                                     \(=a\left(a-1\right)\left(a+1\right)+b\left(b-1\right)\left(b+1\right)+c\left(c-1\right)\left(c+1\right)\) (*)

mà \(a\left(a-1\right)\left(a+1\right)\) là tích 3 số liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> \(a\left(a-1\right)\left(a+1\right)⋮6\)

tương tự :  \(b\left(b-1\right)\left(b+1\right)⋮6\)

    \(c\left(c-1\right)\left(c+1\right)⋮6\)

=> (*) chia hếtcho 6

\(\Leftrightarrow a^3+b^3+c^3-\left(a+b+c\right)\) chia hết cho 6

mà theo bài ra ta có: \(a+b+c⋮6\)

nên  \(a^3+b^3+c^3⋮6\) => đpcm

16 tháng 3 2016

\(S=a^{2015}+b^{2015}+c^{2015}-\left(a+b+c\right)=a\left(a^{2014}-1\right)+b\left(b^{2014}-1\right)+c\left(c^{2014}-1\right)\)

Ta có : \(a\left(a^{2014}-1\right)=a\left(a^{1007}-1\right)\left(a^{1007}+1\right)\) Bạn tự CM chia hết cho 6

=> S chia hết cho 6 

=> dpcm

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

6 tháng 10 2019

Mình chứng minh: 

\(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\)

tương tự như link: Câu hỏi của Cỏ dại - Toán lớp 8 - Học toán với OnlineMath

Ta có:  \(\left(a^3+b^3+c^3\right)-\left(a+b+c\right)⋮6\) (1 )

( => )

Cho  \(a^3+b^3+c^3⋮6\)

 (1) => \(a+b+c⋮6\)

( <= ) 

Cho:  \(a+b+c⋮6\)  

(1) => \(a^3+b^3+c^3⋮6\)

Vậy \(a^3+b^3+c^3⋮6\)<=> \(a+b+c⋮6\)

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

19 tháng 11 2019

What grade are you?

19 tháng 11 2019

Sai rồi còn bày đặt Tiếng Anh .Lần sau không biết thì im đi không lại bị người ta nói cho 

What grade are you in ? Okay