Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :
\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)
\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)
\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)
Cộng từng vế bất đẳng thức (1), (2), (3) ta được :
\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Vậy bất đẳng thức đã được chứng minh
Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :
\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)
Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)
áp dụng BĐT AM-GM với 2 số không âm
\(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
cộng các vế của BĐT ta có
\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
chia cả hai vế của BĐT cho 2 ta có đpcm
Ta có : \(\frac{a+b}{2}\ge\sqrt{ab}\) (1)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(2)
Bất đẳng thức 2 luôn đúng với \(\forall x\),vậy nên bất đẳng thức 1 cũng luôn đúng với mọi x .
Dấu "=" xảy ra khi và chỉ khi \(\left(a-b\right)^2=0\)
=> a-b=0 => a=b
Vậy BDT \(\frac{a+b}{2}\ge\sqrt{ab}\) xảy ra khi a = b
áp dụng ta có :
\(\frac{a+b}{2}\ge\sqrt{ab}\left(1\right)\)
\(\frac{b+c}{2}\ge\sqrt{bc}\left(2\right)\)
\(\frac{a+c}{2}\ge\sqrt{ca}\) (3)
từ 1,2,3 cộng từng ba bất đẳng thức ta được : \(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{a+b+c}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Mở rộng kết quả cho 4 số a,b,c,d không âm ta có bất đẳng thức :
\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)
Mở rộng kết quả cho 5 số a,b,c,d,e không âm ta có bất đẳng thức :
\(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)
Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng \(\forall a,b\ge0\))
Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\forall a,b\ge0\)
\(\frac{b+c}{2}\ge\sqrt{bc}\forall b,c\ge0\)
\(\frac{c+a}{2}\ge\sqrt{ac}\forall a,c\ge0\)
Do đó: \(\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)(đpcm)
áp dụng BĐT cô-si ta có:
\(\frac{a+b}{2}=\frac{a}{2}+\frac{b}{2}\)\(\ge2\sqrt{\frac{a}{2}.\frac{b}{2}}=2\frac{\sqrt{a}\sqrt{b}}{\sqrt{4}}=2\frac{\sqrt{ab}}{2}=\sqrt{ab}\)
Vậy \(\frac{a+b}{2}\ge\sqrt{ab}\)
Dấu đẳng thức xảy ra khi a=b=0 hoặc a=b=1
i don not no
câu này đơn giản quá, ko thích hợp vs người đẳng cấp như anh dây đâu
câu này ai giải đc cho tui 10000
Đặt \(a=x^3,b=y^3,c=z^3\).Áp dụng bất đẳng thức Cô - si với 2 số không âm , ta có
\(\left(x^3+y^3\right)+\left(x^3+xyz\right)\ge2\sqrt{x^3y^3}+2\sqrt{xyz^4}=2\sqrt{xy}\left(xy+z^2\right)\)(1)
\(xy+z^2\ge2\sqrt{xyz^2}=2z\sqrt{xy}\)(2)
Từ (1)(2) \(\Rightarrow x^3+y^3+z^3+xyz\ge2\sqrt{xy}.2z\sqrt{xy}=4xyz\)
\(\Leftrightarrow x^3+y^3+z^3\ge3xyz\)
Vậy \(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\xy=z^2\end{cases}\Leftrightarrow x=y=z\Leftrightarrow a=b=c}\)
P/s tham khảo nha
Nếu n= 2, tức có hai giá trị x1 và x2, và từ giả thiết ở trên, ta có:
điều phải chứng minh - ở đây \(x_1=a;x_2=b\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)
-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân
Ta co:
\(a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}\le\frac{ab+ca}{2}+\frac{bc+ab}{2}+\frac{ca+bc}{2}=ab+bc+ca\)
Suy ra BDT can phai chung minh la:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(dung)
Dau '=' xay khi \(a=b=c\)
áp dụng bất đẳng thức cô- si, ta có:
\(a+b\ge2\sqrt{ab}\) \(\left(1\right)\)
\(b+c\ge2\sqrt{bc}\) \(\left(2\right)\)
\(c+a\ge2\sqrt{ca}\) \(\left(3\right)\)
Cộng (1),(2),(3) vế theo vế, ta được:
\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)
\(\Leftrightarrow\) \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Dấu " = " xảy ra <=> \(a=b=c\)