K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Biến đổi vế 2 :

\(\frac{bc}{abc}+\frac{ac}{abc}+\frac{ab}{abc}\)( quy đồng )

\(=\frac{bc+ac+ab}{abc}\)

Ta có :

\(=\frac{\left(a+b+c\right)\left(bc+ac+ab\right)}{abc}\)

\(=\frac{abc+abc+abc}{abc}\)\(=3\)

→ ( a + b + c ) = 3

Ta có : 3 . 3 = 9 => ĐPCM

5 tháng 8 2015

Gọi a=nM+d và b=eM+d (n,e E N và n>e)

a-b=nM+d-(eM+d)=nM-eM=M(n-e) chia hết cho M (đpcm)

31 tháng 10 2017

Gọi d là số dư của a và b

Gọi k là thương của a và M

Gọi n là thương của b và M

suy ra a-b=(k*M+d)-(n*M+d)=(k-n)*M

Mà a-b=(k-n)*M !!! Suy ra a-b chia hết cho M

23 tháng 7 2015

Gọi số dư đó là r và q ; p lần lượt là thương của phép chia a,b cho m.

Ta có :

a = qm + r và b = pm + r

Do đó a - b = qm + r - pm + r = qm - pm = m.(q - p) chia hết cho m (đpcm).

1 tháng 6 2017

Không mất tính tổng quát, giả sử a \(\ge\)

\(\Rightarrow\) a = b + m ( m \(\ge\)0 )

Ta có :  \(\frac{a}{b}+\frac{b}{a}=\frac{b+m}{b}+\frac{b}{b+m}\)

\(=1+\frac{m}{b}+\frac{b}{b+m}\ge1+\frac{m}{b+m}+\frac{b}{b+m}=1+\frac{m+b}{b+m}=1+1=2\)

Vậy \(\frac{a}{b}+\frac{b}{a}\ge2\)

Dấu " = " chỉ xảy ra \(\Leftrightarrow\) m = 0 \(\Leftrightarrow\)a = b 

1 tháng 6 2017

Ta có: \(\frac{a}{b}>0\Rightarrow\) a và b cùng dấu \(\Rightarrow\frac{b}{a}>0\)

Áp dụng bất đẳng thức cô si ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}=2\)

Dấu bằng xẩy ra khi và chỉ khi \(\frac{a}{b}=\frac{b}{a}\Leftrightarrow a^2=b^2\Leftrightarrow a=b\)

Vì a \(\inℤ\)nên có 2 trường hợp

TH1 : a là số nguyên âm

 \(\Rightarrow\)a có dạng là (-b)

Mà (-b)2 = (-b).(-b) = b.b - là số nguyên dương

Nên a2 \(\ge\)0

TH2 : a là số nguyên dương

\(\Rightarrow\)a2 là số nguyên dương

Nên a2 \(\ge\)0

_HT_

( Cho hỏi -a2 hay là (-a)2 ạ ? )