K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)

\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)

Do đó ta có đpcm

Chúc bạn học tốt!

AH
Akai Haruma
Giáo viên
31 tháng 5 2019

Lời giải:
Đặt \((3a+b-c,3b+c-a,3c+a-b)=(x,y,z)\)

\(\Rightarrow \left\{\begin{matrix} 3a+3b+3c=x+y+z\\ a+2b=\frac{x+y}{2}\\ b+2c=\frac{y+z}{2}\\ c+2a=\frac{x+z}{2}\end{matrix}\right.\)

Bài toán trở thành:

Với các số thực $x,y,z$ thỏa mãn \((x+y+z)^3=24+x^3+y^3+z^3\)

CMR: \((x+y)(y+z)(x+z)=8\)

------------------------------------------------

Áp dụng HĐT \(m^3+n^3=(m+n)^3-3mn(m+n)\) ta có:

\((x+y+z)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow (x+y+z)^3=24+(x+y)^3-3xy(x+y)+z^3\)

\(\Leftrightarrow (x+y+z)^3=24+(x+y+z)^3-3xy(x+y)-3z(x+y)(x+y+z)\)

\(\Leftrightarrow 3(x+y)[z(x+y+z)+xy]=24\)

\(\Leftrightarrow (x+y)[z(y+z)+x(z+y)]=8\)

\(\Leftrightarrow (x+y)(z+x)(z+y)=8\) (đpcm)

25 tháng 9 2017

Đặt \(\left\{{}\begin{matrix}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{matrix}\right.\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3\left(x+y\right)\left(x+z\right)\left(x+z\right)=24\)

\(\Rightarrow3\left(2a+4b\right)\left(2b+4c\right)\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)=1\)

Do đó ta có \(đpcm\)

Chúc bạn học tốt!

20 tháng 11 2017

nhìn cách làm là biết của web khác.You ko nên zô phần câu hỏi tương tự,qua web khác đọc rồi lại viết ngay về web mk.Có lòng thì cho người ta cái link.Vì GP mà ko bik phân biệt nx r........

23 tháng 3 2018

Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)

Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)

\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\Rightarrowđpcm\)

24 tháng 3 2018

Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v

Lời giải:

Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:

\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)

\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)

\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)

16 tháng 6 2015

Đặt \(a^3=x,b^3=y,c^3=z\)\(\Rightarrow x+y+z=0\)

\(a^3b^3+5b^3c^3+3c^3a^3=xy+5yz+3zx=xy+5y\left(-x-y\right)+3x\left(-x-y\right)\)

\(=-\left(3x^2+7xy+5y^2\right)=-\left[3\left(x+\frac{7}{6}y\right)^2+\frac{11}{12}y^2\right]\le0\)

Nhìn đề có vẻ ảo ảo!

 

9 tháng 11 2017

Sửa đề: CMR: \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{1}{5}\left(a+b+c\right)\)

Chứng minh BĐT phụ:

  \(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)\(\forall m;n>0\)Tự chứng minh

Áp dụng bđt trên, ta có

\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{1}{5}\left(a+b+c\right)\)

Vậy..........

30 tháng 8 2020

Đặt \(\hept{\begin{cases}x=a+b\\y=b+2c\\z=c+2a\end{cases}\Rightarrow x+y+z=3a+2b+3c}\)

Khi đó biểu thức đã cho trở thành :

\(\left(x+y+z\right)^3=x^3+y^3+z^3+450\)

\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(y+z\right)=x^3+y^3+z^3+450\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=90\)

\(\Leftrightarrow\left(a+2b+2c\right)\left(b+3c+2a\right)\left(3a+c+b\right)=90\) 

Phân tích 90 thành tích của 3 số nguyên dương rồi bạn tìm được \(a,b,c\) tương ứng.

3 tháng 1 2023

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

3 tháng 1 2023

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm