Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 43 lẻ nên khi viết thành tổng 2 số nguyên tố thì có 1 số chẵn có 1 số lẻ
=> có 1 số = 2 ; 1 số lẻ còn lại
=> a = 2 ; b = 43 - 2 = 41 ( vì a<b mà 2 là số nguyên tó bé nhất )
Vậy a = 2 ; b = 41
Câu 1: Các số là bội của 3 là: 0; 3; 6; 9; 12; 15; 18; 21; 24; 27; 30; 33; 36; 39; 42; 45; 48; 51; 54; 57;....
Các số là ước của 54 là: 1; 2; 3; 6; 9; 18; 27; 54.
Các số vừa là bội của 3 vừa là ước của 54 là: 3; 6; 9; 18; 27; 54
Vậy có 6 số vừa là bội của 3 vừa là ước của 54
Câu 2: 180 = 22 x 32 x5
Số ước 180 là: 3 x 3 x 2= 18 ước.
Các ước nguyên tố của 180 là: {2;3;5} có 3 ước.
Số ước không nguyên tố của 180 là: 18 - 3 = 15 ước.
Câu 3: Ba số nguyên tố có tổng là 106 nên trong ba số này phải có 1 số chẵn => Trong ba số nguyên tố cần tìm có 1 số hạng là số 2.
Tổng hai số còn lại là 106 - 2 = 104.
Gọi 2 số nguyên tố còn lại là a và b (a > b).
Ta có a + b = 104 => Để số a là số nguyên tố lớn nhất nhỏ nhất thì b phải là số nguyên tố nhỏ nhất.
Số nguyên tố b nhỏ nhất là 3 => a = 104 - 3 = 101 cũng là 1 số nguyên tố (thỏa mãn yêu cầu đề bài).
Vậy số nguyên tố lớn nhất thỏa mãn yêu cầu đề bài là 101.
Câu 4: Số lớn nhất 9998
Số bé nhất 1000
Có: (9998 - 1000) : 2 + 1 = 4500 (số)
Câu 5
Câu 6
Câu 7
Câu 8
Câu 9
Câu 10
Câu 11
Câu 12
Câu 13
2
90
4
7
15%
18
192
12
7
Câu 14: Anh 20, em 10
Câu 15: giảm đường kính đi 20% thì bán kính cũng giảm đi 20%
bán kính của hình tròn mới là 100% - 20%= 80%
diện tích hình tròn có bán kính 80% là 80% * 80% = 64%
diên tích hình tròn cũ hơn hình tròn mới là 100% * 100% - 64%= 36%
36%=113,04cm2 => diện tích hình tròn ban đầu là 113,04: 36 * 100 = 314cm2
Câu 16: Số nhỏ nhất thoả mãn đề bài là: 24,01
Số lớn nhất thoả mãn đề bài là: 24,99
Từ 1 đến 99 có:
(99 - 1) : 1 + 1 = 99 (số)
Vậy có 99 số thoả mãn đầu bài.
Câu 17:
126: a dư 25=>a khác 0 ; 1;126
=>126-25=101 chia hết cho a
Mà 101=1.101
=>a=1(L) hoặc a=101(TM)
Vậy a=101
Câu 18:
Có số các số tự nhiên có 4 chữ số là:
(9999-1000) : 1 + 1 = 9000 (số)
Đáp số: 9000 số
Có số các số chẵn có 3 chữ số là:
(998-100) : 2 + 1 = 450 (số)
Đáp số: 450 số
Câu 19: Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Câu 20: Để tìm tập hợp con của A ta chỉ cần tìm số ước của 154
Ta có:154 = 2 x 7 x 11
Số ước của 154 là : ( 1 + 1 ) x ( 1 + 1 ) x ( 1 + 1 ) = 8 ( ước )
Số tập hợp con của tập hợp A là:
2n trong đó n là số phần tử của tập hợp A
=> 2n = 28 = 256 ( tập hợp con )
Trả lời: A có 256 tập hợp con
Câu 21:
a
b
c
4
6
15 & 45
Phân số `19/8 ` được viết dưới dạng số thập phân có phần nguyên là:
A. 2 C. 357
B. 3 D. Không viết được dưới dạng thập phân
a) Ta có: \(a+b=54\Rightarrow a=54-b\)
Thay vào \(a+c=45\) \(\Rightarrow54-b+c=45\)
Lại có: \(b+c=63\Rightarrow c=63-b\)
Thay vào \(54-b+c=45\Rightarrow54-b+63-b=45\)
Tìm được b:
\(\Rightarrow117-2\times b=45\)
\(\Rightarrow2\times b=117-45\)
\(\Rightarrow2\times b=72\)
\(\Rightarrow b=72:2=36\)
Sau khi tìm được b ta thay \(b=36\) vào \(a+b=54\)
Ta tìm được a:
\(a+36=54\)
\(\Rightarrow a=54-36\)
\(\Rightarrow a=18\)
Sau khi tìm được a ta thay \(a=18\) vào \(a+c=45\)
Ta tìm được c:
\(\Rightarrow18+c=45\)
\(\Rightarrow c=45-18\)
\(\Rightarrow c=27\)
Vậy 3 số a,b,c là \(18,36,27\)
a) Ta có hệ thống phương trình:
a + b = 54
b + c = 63
a + c = 45
The first method of the first method has been:
2a + b + c = 117
Trừ phương thức thứ ba ra khỏi phương thức trên ta được:
2a + b + c - (a + c) = 117 - 45
a + b = 72
Thay a + b = 72 vào phương trình đầu tiên ta được:
72 = 54
một = 18
Thay a = 18 vào phương trình a + b = 54 ta được:
18 + b = 54
b = 36
Thay a = 18 và b = 36 vào phương trình b + c = 63 ta được:
36 + c = 63
c = 27
Do đó a = 18, b = 36, c = 27.
b) Call number to find is xy, ta has:
10x + y + 20 + xy = 292
Rút gọn phương trình, ta được:
10x + y + xy = 272
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 8 và y = 4 thỏa mãn phương trình:
10(8) + 4 + 8(4) = 80 + 4 + 32 = 116
Vậy số đó là 84.
c) Call number to find is xy, ta has:
10x + y + 5 = xy + 428
Rút gọn phương trình, ta được:
10x + y - xy = 423
Vì số có hai chữ số nên x ≠ 0. Ta có thể thử các giá trị khác nhau của x và y để tìm nghiệm. Bằng cách thử và sai, chúng tôi thấy rằng x = 7 và y = 9 thỏa mãn phương trình:
10(7) + 9 - 7(9) = 70 + 9 - 63 = 16
Vậy số đó là 79.
d) Call hai số cần tìm là x và y, ta có:
(x + y)/2 = 45
y = 2x
Thay phương trình thứ hai vào phương trình thứ nhất, ta được:
(x + 2x)/2 = 45
3x/2 = 45
3x = 90
x = 30
Thay x = 30 vào phương trình thứ hai, ta được:
y = 2(30)
y = 60
Vậy hai số là 30 và 60.
43 là một số nguyên tố lẻ nên
43 = số nguyên tố chẵn + số nguyên tố lẻ .
Số nguyên tố chẵn chỉ có 2
Vì a < b nên a = 2
b = 43 - 2
b = 41