Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường phân giác của góc phần tư thứ nhất có 1 vtcp là (1;1)
\(\Rightarrow\) d cũng nhận (1;1) là 1 vtcp
Phương trình: \(\left\{{}\begin{matrix}x=-3+t\\y=5+t\end{matrix}\right.\)
(a) phân giác trong y=-2 , phân giác ngoài x=2
(b) x=5
(c)x+15y+28=0
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
a, Phương trình đường thẳng song song với \(\Delta\) và đi qua \(M\left(1;\dfrac{1}{2}\right)\) là \(y=\dfrac{1}{2}\)
b, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(3;4\right)\) là \(x=3\)
c, Phương trình đường thẳng vuông góc với \(\Delta\) và đi qua \(M\left(-1;2\right)\) là \(y=2\)
a)Phương Trình của đường thẳng ox là :y=0x+0 .
b)Phương Trình của đường thẳng oy là x=0
a, Đường phân giác góc phần tư thứ nhất là một nửa đường thẳng x - y = 0 nằm ở góc phần tư thứ nhất
=> d nhận (1 ; -1) làm vecto pháp tuyến
=> PT đi qua M (-2 ; -5) là
x + 2 - y - 5 = 0 ⇔ x - y - 3 = 0
b, c, Lười lắm ko làm đâu :)
làm hộ ý b đi. ý c t ấy cx đc