Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(c,20=2^2\cdot5\\ 45=3^2\cdot5\\ ƯCLN\left(20,45\right)=5\\ \RightarrowƯC\left(20,45\right)=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\\ C=Ư\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(d,\left(6x^2-7x+1\right)\left(x^3-x\right)=0\\ \Leftrightarrow\left(x-1\right)\left(6x-1\right)x\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\dfrac{1}{6}\\x=1\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow D=\left\{-1;0;\dfrac{1}{6};1\right\}\)
Sửa: \(\left[{}\begin{matrix}x=0\\x=\dfrac{1}{6}\\x=1\\x=-1\end{matrix}\right.\Leftrightarrow D=\left\{-1;0;\dfrac{1}{6};1\right\}\)
\(a,C=\left\{0;5;10;15;20;25;30\right\}\\ b,x^2+3x-4=0\\ \Leftrightarrow x^2-x+4x-4=0\\ \Leftrightarrow x\left(x-1\right)+4\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+4\right)=0\\ \Leftrightarrow x-1=0.hoặc.x+4=0\\ \Leftrightarrow x=1.hoặc.x=-4\\ Vậy:D=\left\{-4;1\right\}\)
a: A={x\(\in R\)|x^2+x-6=0 hoặc 3x^2-10x+8=0}
=>x^2+x-6=0 hoặc 3x^2-10x+8=0
=>(x+3)(x-2)=0 hoặc (x-2)(3x-4)=0
=>\(x\in\left\{-3;2;\dfrac{4}{3}\right\}\)
=>A={-3;2;4/3}
B={x\(\in\)R|x^2-2x-2=0 hoặc 2x^2-7x+6=0}
=>x^2-2x-2=0 hoặc 2x^2-7x+6=0
=>\(x\in\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
=>\(B=\left\{1+\sqrt{3};1-\sqrt{3};2;\dfrac{3}{2}\right\}\)
A={-3;2;4/3}
b: \(B\subset X;X\subset A\)
=>\(B\subset A\)(vô lý)
Vậy: KHông có tập hợp X thỏa mãn đề bài
`#3107.101107`
a,
\(\text{A = }\left\{x\in R\text{ | }\left(2x-x^2\right)\left(3x-2\right)=0\right\}\)
`<=> (2x - x^2)(3x - 2) = 0`
`<=>`\(\left[{}\begin{matrix}2x-x^2=0\\3x-2=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x\left(2-x\right)=0\\3x=2\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2-x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=2\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy, `A = {0; 2; 2/3}`
b,
\(\text{B = }\left\{x\in R\text{ | }2x^3-3x^2-5x=0\right\}\)
`<=> 2x^3 - 3x^2 - 5x = 0`
`<=> x(2x^2 - 3x - 5) = 0`
`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-3x-5=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x^2-2x+5x-5=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x^2-2x\right)+\left(5x-5\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x\left(x-1\right)+5\left(x-1\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\2x+5=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\\x=1\end{matrix}\right.\)
Vậy, `B = {-5/2; 0; 1}.`
c,
\(\text{C = }\left\{x\in Z\text{ | }2x^2-75x-77=0\right\}\)
`<=> 2x^2 - 75x - 77 = 0`
`<=> 2x^2 - 2x + 77x - 77 = 0`
`<=> (2x^2 - 2x) + (77x - 77) = 0`
`<=> 2x(x - 1) + 77(x - 1) = 0`
`<=> (2x + 77)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+77=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-77\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{77}{2}\\x=1\end{matrix}\right.\)
Vậy, `C = {-77/2; 1}`
d,
\(\text{D = }\left\{x\in R\text{ | }\left(x^2-x-2\right)\left(x^2-9\right)=0\right\}\)
`<=> (x^2 - x - 2)(x^2 - 9) = 0`
`<=>`\(\left[{}\begin{matrix}x^2-x-2=0\\x^2-9=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x^2+x-2x-2=0\\x^2=9\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}\left(x^2+x\right)-\left(2x+2\right)=0\\x^2=\left(\pm3\right)^2\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x\left(x+1\right)-2\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x-2=0\\x+1=0\\x=\pm3\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=-1\\x=\pm3\end{matrix}\right.\)
Vậy, `D = {-1; -3; 2; 3}.`
a) \(A = \{ - 2; - 1;0;1;2\} \)
\(B = \{ - 3; - 2; - 1;0;1;2;3\} \)
b) Mỗi phần tử của tập hợp A đều thuộc tập hợp B.
Bạn ghi lại đề đi bạn. Với lại cho mình hỏi là đề bài yêu cầu gì vậy?
\(x^4-6x^2+8=0\\ \Leftrightarrow x^4-2x^2-4x^2+8=0\\ \Leftrightarrow x^2\left(x-2\right)-4\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)^2\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(F=\left\{-2;2\right\}\)
Ta có: \(x^4-6x^2+8=0\)
\(\Leftrightarrow x^3\left(x-2\right)+2x^2\left(x-2\right)-2x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(F=\left\{2;-2;\sqrt{2};-\sqrt{2}\right\}\)