K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

a)  \(4x^2-4xy+2y^2+2y+1=\left(2x-y\right)^2+\left(y+1\right)^2\)

b)  \(x^2+2x+y^2-4y+5=\left(x+1\right)^2+\left(y-2\right)^2\)

c)  bạn ktra lại đề

10 tháng 6 2015

B1)9x4+16y6-24x2y3=(3x2-4y3)2

B2)a)81-x4=(9-x2)(9+x2)=(3-x)(3+x)(9+x2)

b)(2x+y)2-1=(2x+y-1)(2x+y+1)

c)(+y+z)2-(x-y-z)2=(x+y+z-x+y+z)(x+y+z+x-y-z)=(2y+2z)2x=4x(y+z)

B3)

(123+1)(123-1)-36.46

=126-1-(3.4)6

=126-1-126=-1

a: Ta có: \(x^2-x+1\)

\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{4}\)

b: Ta có: \(x^2+y^2-4x+y+5\)

\(=\left(x^2-4x+4\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-2\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)

Dấu '=' xảy ra khi x=2 và \(y=-\dfrac{1}{2}\)

29 tháng 6 2017

9x2 - 6x + 1 = (3x + 1 )2

-x2 + 6x - 9 = ( -x - 3 )2

25x + 30x + 9 = ( 5x + 3 )2

-1/4 + 2x - x2 = ( - 1/2 - x )2

4x2 - 12x + 9 = ( 2x +3 )2

29 tháng 6 2017

a, 9x2-6x+1

=(3x)2-2.3x.1+12

=(3x-1)2

b, -x2+6x-9

=-(x2-6x+9)

=-(x2-2x.3+32)

=-(x-3)2

c, 25x2+30x+9

=(5x)2+2.5x.3+32

=(5x+3)2

d, Mik nghĩ là đề sai chỗ +2x phải là +x (ko tin bn có thể thế đại 1 số rùi thử lại nhoa!!!)

e, 4x2-12x+9

=(2x)2-2.2x.3+32

=(2x-3)2

Chúc bn học giỏi nhoa!!!

20 tháng 10 2023

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

a: 2x^2y-50xy=2xy(x-25)

b: 5x^2-10x=5x(x-2)

c: 5x^3-5x=5x(x^2-1)=5x(x-1)(x+1)

d: \(x^2-xy+x=x\left(x-y+1\right)\)

e: x(x-y)-2(y-x)

=x(x-y)+2(x-y)

=(x-y)(x+2)

f: 4x^2-4xy-8y^2

=4(x^2-xy-2y^2)

=4(x^2-2xy+xy-2y^2)

=4[x(x-2y)+y(x-2y)]

=4(x-2y)(x+y)

f1: x^2ỹ-y^2+y

=(x-y)(x+y)+(x+y)

=(x+y)(x-y+1)

24 tháng 7 2022

bài 2 

c) 37.43 = (40-3).(40+3)

              = 40^2-3^2 

              = 1600-9

              = 1591

 

c) 37 . 43

= (40 - 3) . ( 40+3)

= 40^2 - 3^2 

= 1600 - 0

= 1591

BÀI 3: viết biểu thức sau dưới dạng tổng, hiệu 2 bình phương.

 4 x^2 - 12x - y^2 + 2y + 1

= (2x)^2 -12x +9-y^2 +2y +1 

= (2x-3)^2 - (y+1)^2

1 tháng 9 2023

a) \(3x^2-3xy-5x+5y\)

\(=\left(3x^2-3xy\right)-\left(5x-5y\right)\)

\(=3x\left(x-y\right)-5\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5\right)\)

b) \(2x^3y-2xy^3-4xy^2-2xy\)

\(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left[x^2-\left(y+1\right)^2\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

c) \(x^2+1+2x-y^2\)

\(=\left(x^2+2x+1\right)-y^2\)

\(=\left(x+1\right)^2-y^2\)

\(=\left(x+1+y\right)\left(x+1-y\right)\)

d) \(x^2+4x-2xy-4y+y^2\)

\(=\left(x^2-2xy+y^2\right)+\left(4x-4y\right)\)

\(=\left(x-y\right)^2+4\left(x-y\right)\)

\(=\left(x-y\right)\left(x-y+4\right)\)

e) \(x^3-2x^2+x\)

\(=x\left(x^2-2x+1\right)\)

\(=x\left(x-1\right)^2\)

f) \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)+y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x-y+1\right)\left(x+y+1\right)\)

a: =3x(x-y)-5(x-y)

=(x-y)(3x-5)

b: \(=2xy\left(x^2-y^2-2y-1\right)\)

\(=2xy\left[x^2-\left(y^2+2y+1\right)\right]\)

\(=2xy\left(x-y-1\right)\left(x+y+1\right)\)

d:

Sửa đề: x^2+4x-2xy-4y+y^2

=x^2-2xy+y^2+4x-4y

=(x-y)^2+4(x-y)

=(x-y)(x-y+4)

e: =x(x^2-2x+1)

=x(x-1)^2

f: =2(x^2+2x+1-y^2)

=2[(x+1)^2-y^2]

=2(x+1+y)(x+1-y)

18 tháng 11 2018

a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)

\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)

\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)

Với mọi x, y ta có :

\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)

\(\Leftrightarrow pt\) vô nghiệm