Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
triệt tiêu căn x dưới mẫu thì còn căn x trên tử thôi
\(\dfrac{-2m+1}{2}=1-2m\) \(\Leftrightarrow\) m=\(\dfrac{1}{2}\).
\(\dfrac{m-1}{2}=m-1\) \(\Leftrightarrow\) m=1.
Hai phương trình đã cho không là hai phương trình tương đương.
-Đặt \(\sqrt{x}=a\Rightarrow x=a^2\)
\(x+\sqrt{x}-6=a^2+a-6=a^2-2a+3a-6=a\left(a-2\right)+3\left(a-2\right)=\left(a-2\right)\left(a+3\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)
\(x^2+x^2-14x+49=169\)
\(\Leftrightarrow2x^2-14x-120=0\)
\(\Leftrightarrow2\left(x^2-7x-60\right)=0\)
\(\Leftrightarrow x^2-7x-60=0\)
Đó bạn
Bài 1:
ĐKXĐ: \(x\ge\dfrac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2-4x^2+4x-1=0\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)
Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$
PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)
Vậy pt vô nghiệm.
2\(\sqrt{\dfrac{16}{3}}\) - 3\(\sqrt{\dfrac{1}{27}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{3}{3\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{8}{\sqrt{3}}\) - \(\dfrac{1}{\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{16}{2\sqrt{3}}\) - \(\dfrac{2}{2\sqrt{3}}\) - \(\dfrac{3}{2\sqrt{3}}\)
= \(\dfrac{11}{2\sqrt{3}}\)
= \(\dfrac{11\sqrt{3}}{6}\)
f, 2\(\sqrt{\dfrac{1}{2}}\)- \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{2}{\sqrt{2}}\) - \(\dfrac{2}{\sqrt{2}}\) + \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5}{2\sqrt{2}}\)
= \(\dfrac{5\sqrt{2}}{4}\)
(1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1- \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3+\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{3-1}\)
= \(\dfrac{-4}{2}\)
= -2
\(\sqrt{0,81.a^{10}\left(x^2-2x+1\right)}=\sqrt{\left(0,9\right)^2.\left(a^5\right)^2\left(x-1\right)^2}\)
\(=0,9.\left|a^5\left(x-1\right)\right|=0,9.\left|a^5x-a^5\right|\)
=\(\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+3}\right).\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
=\(\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)+\sqrt{x}\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}{\left(x-9\right)\left(\sqrt{x}+2\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
=\(\dfrac{2x+6\sqrt{x}+\sqrt{x}\left(x-\sqrt{x}-6\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}.\dfrac{1}{\sqrt{x}}\)
=\(\dfrac{2x+6\sqrt{x}+x\sqrt{x}-x-6\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
=\(\dfrac{x+x\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
=\(\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)}\)
\(a\sqrt{a}+\sqrt{a}+a+1\)
\(=\sqrt{a}\left(a+1\right)+\left(a+1\right)\)
\(=\left(a+1\right)\left(\sqrt{a}+1\right)=\left(a+1\right)\left(1+\sqrt{a}\right)\)
Đặt \(\sqrt{a}\) ra đó bạn