Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\frac{1}{x^2+\sqrt{x}}\frac{\left(\int^4_2^5^2_5_8\vec{\log_1\Rightarrow\beta}\right)}{100462}\)
B=\(\sqrt{3+\sqrt{5}}\)-\(\sqrt{3-\sqrt{5}}\)-\(\sqrt{2}\)
B=\(\sqrt{\frac{1}{2}\left(6+2\sqrt{5}\right)}\)-\(\sqrt{\frac{1}{2}\left(6-2\sqrt{5}\right)}\)-\(\sqrt{2}\)
B=\(\sqrt{\frac{1}{2}\left(5+2\sqrt{5}.1+1\right)}\)-\(\sqrt{\frac{1}{2}\left(5-2\sqrt{5}.1+1\right)}\)-\(\sqrt{2}\)
B=\(\sqrt{\frac{1}{2}\left(\sqrt{5}+1\right)^2}\)-\(\sqrt{\frac{1}{2}\left(\sqrt{5}-1\right)^2}\)-\(\sqrt{2}\)
B=\(\frac{\sqrt{5}+1}{\sqrt{2}}\)-\(\frac{\sqrt{5}-1}{\sqrt{2}}\)-\(\sqrt{2}\)
B=\(\frac{2}{\sqrt{2}}\)-\(\sqrt{2}\)
B=\(\sqrt{2}\)-\(\sqrt{2}\)=0
Ta có :
\(B.\sqrt{2}=\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}-\sqrt{2}\right).\sqrt{2}\)
\(=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)
\(=\sqrt{5}+1-\left|\sqrt{5}-1\right|-2=0\)
\(\Rightarrow B=0\)
\(2^{1995}=\left(2^{\frac{1995}{863}}\right)^{863}\approx4,96^{863}\)
Vì \(4,96< 5\)nên \(4,96^{863}< 5^{863}\)
Vậy \(2^{1995}< 5^{863}\)
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
2^1995>5^863 nha bạn Còn cách làm thì mình không biết@
B = \(\dfrac{3}{5}+\dfrac{3}{5^2}+\dfrac{3}{5^3}+...+\dfrac{3}{5^{2016}}\)
=> 5B = \(3+\dfrac{3}{5}+\dfrac{3}{5^2}+...+\dfrac{3}{5^{2015}}\)
=> 4B = \(3-\dfrac{3}{5^{2016}}\)
=> B = \(\dfrac{3-\dfrac{3}{5^{2016}}}{4}\)
@Nguyễn Đình Dũng có thể đưa ra kết quả chính xác được không?