Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: H và E đối xứng với nhau qua AB
nên AB là đường trung trực của HE
=>AH=AE
=>ΔAEH cân tại A
mà AB là đường trung tuyến
nên AB là tia phân giác của góc HAE(1)
Ta có: H và D đối xứng nhau qua AC
nên AC là đường trung trực của HD
=>AH=AD
=>ΔAHD cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAD(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
mà AD=AE
nên A là trung điểm của DE
b: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H
a) Vì E đối xứng vói H qua AB (gt)=> Tam giác AEH là tam giác cân ( t/c các đường trong tam giác cân)=> EAM=MAH( AM là đường phân giác) (1)
CM tương tự ta có tam giác AHD cân tại A=> AN là dường phân giác=> HAN=DAN (2)
Vì ABC = 1V(gt) => MAH+HAN=90 (3)
Từ (1) (2) (3) => EAM+ NAD= 90(4)
Từ (3) (4)=> EAD= 180=> A,E,D thẳng hàng.(5)
Vì EAH cân tại A(cmt) => EA=AH( đn tam giác cân)
Vì HAD cân tại A ( cmt) => AH=AD(__________)
=> EA=AD ( bắc cầu) (6)
Từ (5) (6) => E đối xứng D qua A
b) CM MHAN là hcn (3 góc vuông)
=> MN=AH( 2 đường chéo)
Gọi O là giao điểm của MN và AH
=> O là trung điểm của MN và AH
Xét AHM vuông tại H (AH là đường cao) có:
HO là trung tuyến => HO = 1/2 AM (định lý)
mà AM= DE (cmt)
=> HO= 1/2 DE
Xét DHE có
O là trung điểm DE ( cmt)
HO là trung truyến
HO= 1/2 DE (cmt)
=> DHE vuông tại H
Do lỗi Online Math nên mình không gửi câu trả lời được. Mình phải dùng paint .
tam giác ABC phải cân chứ
giải giúp mình