K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

\(A=\left[\frac{5^3}{6}+\frac{5^3}{12}+\frac{5^3}{20}+\frac{5^3}{42}+\frac{5^3}{56}+\frac{5^3}{72}+\frac{5^3}{90}\right]:\frac{1124.2247-1123}{1124+1123.2247}\)

\(A=5^3\left[\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right]:\frac{1124.2247-1123}{1124+1123.2247}\)

\(A=5^3\left[\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right]:\frac{1124.2247-1123}{1124+1123.2247}\)

\(A=5^3\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right]:\)\(\frac{1124.2247-1124+1}{1123.2247+1123+1}\)

\(A=5^3.\left(\frac{1}{2}-\frac{1}{10}\right):\frac{1224.\left(2247-1\right)+1}{1223.\left(2247+1\right)-1}\)

\(A=5^3.\frac{2}{5}:1\)

\(A=5^2.2\)

\(A=50\)

11 tháng 8 2017

a) \(\frac{-77}{143}+\frac{65}{143}-\frac{66}{143}+\frac{7}{22}\)

\(\frac{-78}{143}+\frac{7}{22}\)\(\frac{-6}{11}+\frac{7}{22}\)\(\frac{-12}{22}+\frac{7}{22}\)

\(\frac{-5}{22}\)

b) \(\frac{-4}{5}-\frac{20}{170}+\frac{51}{170}+\frac{150}{170}\)\(\frac{-4}{5}-\frac{221}{170}\)

\(\frac{-4}{5}-\frac{13}{10}\)\(\frac{-8}{10}-\frac{13}{10}\)=\(\frac{-21}{10}\)

13 tháng 8 2015

\(2x+1+\frac{1}{6}+1+\frac{1}{12}+..+1+\frac{1}{90}=10\)

=> 2x + 8 + \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=10\)

=> 2x + \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=10-8\)

\(2x+1-\frac{1}{10}=2\)

=> 2x + \(\frac{9}{10}=2\)

=> 2x          = 2 - 9/10

=>2x           = 11/10 

=> x              = 11/10 : 2

x                  =  11/20 

13 tháng 8 2015

thang Tran ơi,2x+1-1/10 ở đâu vậy

Phải là 2x+1/2-1/10 chứ

31 tháng 12 2016

c )

\(1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\frac{1}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{3}{2}}}}=1+\frac{1}{1+\frac{1}{1+\frac{5}{3}}}=1+\frac{1}{1+\frac{1}{\frac{8}{3}}}=1+\frac{1}{\frac{11}{8}}=\frac{19}{11}\)

9 tháng 9 2017

Ta có : \(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-\frac{1}{42}-\frac{1}{30}-\frac{1}{12}-\frac{1}{6}-\frac{1}{2}\)

\(=\frac{9}{10}-\left(\frac{1}{90}+\frac{1}{72}+\frac{1}{56}+\frac{1}{42}+\frac{1}{30}+\frac{1}{12}+\frac{1}{6}+\frac{1}{2}\right)\)

\(=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{9.10}\right)\)

\(=\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)

\(=\frac{9}{10}-\frac{9}{10}=0\)

9 tháng 9 2017

phải =\(\frac{1}{20}\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

\(=1+1+1+1+1+1+1+1+1+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\right)\)

\(=9+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)

=9+9/10=99/10