Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{x-100}{24}+\frac{x-98}{26}+\frac{x-96}{28}=3\)
\(\Rightarrow\)\(\frac{91x-100.91}{91.24}+\frac{84x-84.98}{26.84}+\frac{78x-96.78}{78.28}\)
=\(\frac{91x-9100+84x-8232+78x-7488}{2184}\)
=\(\frac{91x+84x+78x-9100-8232-7488}{2184}\)
=\(\frac{x\left(91+84+78\right)-\left(9100+8232+7488\right)}{2184}\)
=\(\frac{x253-24820}{2184}=3\)
\(\Rightarrow\)x253- 24820 =6552
\(\Rightarrow\)x253= 31372
\(\Rightarrow\)x = 124
\(\frac{x-100}{24}+\frac{x-98}{+26}+\frac{x-96}{28}=3\)
\(=\frac{\left(x-100\right)}{24}+\frac{\left(x-98\right)}{26}+\frac{\left(x-96\right)}{28}-1=0\)
\(\Leftrightarrow\frac{\left(x-100\right)}{24-1}+\frac{\left(x-98\right)}{26-1}+\frac{\left(x-96\right)}{28-1}=0\)
\(\Leftrightarrow\left(x-124\right)\left(\frac{1}{24}+\frac{1}{26}+\frac{1}{28}\right)=0\)
Vì: \(\frac{1}{24}+\frac{1}{26}+\frac{1}{28}\ne0\)
\(\Rightarrow x-124=0\)
\(\Rightarrow x=124-0\)
\(\Rightarrow x=124\)
a )
\(\Rightarrow\frac{x-100}{24}-1+\frac{x-98}{26}-1+\frac{x-96}{26}-1=0\)
\(\frac{x-124}{24}+\frac{x-124}{26}+\frac{x-124}{28}=0\)
\(\left(x-124\right)\left(\frac{1}{26}+\frac{1}{24}+\frac{1}{28}\right)=0\)
\(\Rightarrow x-124=0\Rightarrow x=124\)
\(\frac{x-100}{24}+\frac{x-98}{26}+\frac{x-96}{28}=3\)
\(\Leftrightarrow\frac{x-100}{24}-1+\frac{x-98}{26}-1+\frac{x-96}{28}-1=0\)
\(\Leftrightarrow\frac{x-124}{24}+\frac{x-124}{26}+\frac{x-124}{28}=0\)
\(\Leftrightarrow\left(x-124\right)\left(\frac{1}{24}+\frac{1}{26}+\frac{1}{28}\right)=0\)
Mà 1/24+1/26+1/28 khác 0
\(\Leftrightarrow x-124=0\Leftrightarrow x=124\)
\(\frac{x-100}{24}+\frac{x-98}{26}+\frac{x-96}{28}=3\)
\(\Leftrightarrow\frac{x-100}{24}-1+\frac{x-98}{26}-1+\frac{x-96}{28}-1=0\)
\(\Leftrightarrow\frac{x-124}{24}+\frac{x-124}{26}+\frac{x-124}{28}=0\)
\(\Leftrightarrow\left(x-124\right)\left(\frac{1}{24}+\frac{1}{26}+\frac{1}{28}\right)=0\)
Mà \(\frac{1}{24};\frac{1}{26};\frac{1}{28}\)khác \(0\)
\(\Leftrightarrow x-124=0\Leftrightarrow x=124\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
2m - 2n = 256 = 28 \(\Rightarrow\)2n . ( 2m-n - 1 ) = 28
dễ thấy m \(\ne\)n , ta xét 2 trường hợp :
a) nếu m - n = 1 thì từ ( 1 ) ta có : 2n . ( 2 - 1 ) = 28 . suy ra : n = 8, m = 9
b) nếu m - n \(\ge\)2 thì 2m-n - 1 là 1 số lẻ lớn hơn 1 nên vế trái của ( 1 ) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố. còn vế phải của ( 1 ) chỉ chứa thừa số nguyên tố 2. Mâu thuẫn
Vậy n = 8 , m = 9 là đáp số bài trên
đặt A = \(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{99}{3^{99}}+\frac{100}{3^{100}}\)
3A = \(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{99}{3^{98}}+\frac{100}{3^{99}}\)
3A - A = 2A = \(1+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)-\frac{100}{3^{100}}\)
biểu thức trong dấu ngoặc nhỏ hơn \(\frac{1}{2}\)( tự chứng minh ) nên 2A < 1 + \(\frac{1}{2}\)
\(\Rightarrow A< \frac{3}{4}\)
\(\frac{x}{24}-\frac{25}{6}+\frac{x}{26}-\frac{49}{13}+\frac{x}{28}-\frac{24}{7}=3\)
\(x\left(\frac{1}{24}+\frac{1}{26}+\frac{1}{28}\right)-\left(\frac{25}{6}+\frac{49}{13}+\frac{24}{7}\right)=3\)
\(x\cdot\frac{253}{2184}=\frac{7843}{546}\)
\(x=124\)