Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{5a+3b}{5a-3b}=\frac{5kb+3b}{5kb-3b}=\frac{b\left(5k+3\right)}{b\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(1\right)\)
\(\frac{5c+3d}{5c-3d}=\frac{5kd+3d}{5kd-3d}=\frac{d\left(5k+3\right)}{d\left(5k-3\right)}=\frac{5k+3}{5k-3}\left(2\right)\)
Từ (1) và (2) => \(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
Bài 3:
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=k^3\)
=> \(\frac{a}{d}=k^3\) (1)
Lại có: \(\frac{a+b+c}{b+c+d}=\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
=> \(\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\) (2)
Từ (1) và (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\)
a: Ta có: BE⊥AM
CF⊥AM
Do đó;BE//CF
Xét ΔBME vuông tại E và ΔCMF vuông tại F có
BM=CM
\(\widehat{BME}=\widehat{CMF}\)
Do đó: ΔBME=ΔCMF
Suy ra:BE=CF
b: ta có: ΔBME=ΔCMF
nên ME=MF
c: Xét tứ giác BECF có
BE//CF
BE=CF
Do đó: BECF là hình bình hành
Suy ra: EC//BF và EC=BF
Bạn làm ơn chụp ảnh rõ hơn được không? Mình không nhìn thấy gì hết ớ!
Chữ đẹp với trình bày ngọn ngàng thế!Ui,sao mà ghen tị thế
vừa nhỏ vừa nghiêng lại còn chụp thiếu nữa
=> chứng minh = niêm tin