Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm phần sườn còn phần kết luận bạn tự làm
- \(A=x^2-5x+3=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)
- \(B=-x^2-x=-\left(x+\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
- \(C=2x^2+5x+7=2\left(x+\frac{5}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\)
- \(D=-x^2+5x+7=-\left(x-\frac{5}{2}\right)^2+\frac{53}{4}\le\frac{53}{4}\)
a) \(A=x^2-5x+3\)
\(A=x^2-5x+\frac{25}{4}-\frac{13}{4}\)
\(A=\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\)
Có: \(\left(x-\frac{5}{2}\right)^2\ge0\Rightarrow\left(x-\frac{5}{2}\right)^2-\frac{13}{4}\ge-\frac{13}{4}\)
Dấu = xảy ra khi: \(\left(x-\frac{5}{2}\right)^2=0\Rightarrow x-\frac{5}{2}=0\Rightarrow x=\frac{5}{2}\)
Vậy: \(Min_A=-\frac{13}{4}\) tại \(x=\frac{5}{2}\)
b) \(B=\left(-x^2\right)-x\)
\(B=-\left(x^2+x\right)\)
Có: \(x^2\ge x\Rightarrow x^2+x\ge0\Rightarrow-\left(x^2+x\right)\le0\)
Dấu = xảy ra khi: \(-\left(x^2+x\right)=0\Rightarrow x^2+x=0\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
Vậy: \(Max_B=0\) tại \(\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)
nè bạn Câu hỏi của Hương Linh - Toán lớp 8 - Học toán với OnlineMath
- A=x2-10x+101
=x2-10x+25+76
=(x-5)2+76
Ta thấy:\(\left(x-5\right)^2+76\ge0+76=76\)
\(\Rightarrow A\ge76\)
Dấu "=" <=>x-5=0 =>x=5
Vậy...
- B=4a2+4a+2
=4a2+4a+1+1
=(2a+1)2+1
Ta thấy:\(\left(2a+1\right)^2+1\ge0+1=1\)
\(\Rightarrow B\ge1\)
Dấu "=" <=> 2a+1=0 <=>a=-1/2
- C=x2+4x
=x2+4x+4-4
=(x+2)2-4
Ta thấy:\(\left(x+2\right)^2-4\ge0-4=-4\)
\(\Rightarrow C\ge-4\)
Dấu "=" <=> (x+2)=0 =>x=-2
A = (x-1)(x+2)(x+3)(x+6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= ( x2 + 5x - 6)(x2 + 5x + 6)
= ( x2 + 5x )2 - 36 \(\ge\) -36
Dấu "=" <=> x = 0 hoặc x = -5
Vậy A min = -36 <=> x = 0 hoặc x = - 5 .
B=x2 - 2x+y2 +4y+8
=x2-2x+1+y2+4y+4+3
=(x-1)2+(y+2)2+3
=(x-1)2+(y+2)2+3 \(\ge\)3
Dấu "=" <=>x=1 và y=-2
Vậy A min=3 <=>x=1 và y=-2