Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tần số lớn nhất là 31
=>Nhóm chứa mốt là [60;80)
j=4
a4=60
m4=31; m3=23; m5=29; h=20
Do đó, ta có:
\(M_0=60+\dfrac{31-23}{\left(31-23\right)+\left(31-29\right)}\cdot20=76\)
=>Đa số các con ong có tuổi thọ là 76 ngày
Tần số lớn nhất là 31 nên nhóm chứa mốt là \(\left[ {60;80} \right).\;\)Ta có:
\(j = 4;\;\;{a_4} = 60;\;\;{m_4} = 31;\;\;{m_3} = 23;\;\;{m_5} = 29;\;\;h = 20\). Do đó,
\({M_0} = 60 + \frac{{31 - 23}}{{\left( {31 - 23} \right) + \left( {31 - 29} \right)}} \times 20 = 76\).
Ý nghĩa: Đa số các con ong có tuổi thọ là 76 ngày.
Có \(7! = 5040\) cách sắp xếp 7 bạn ngồi vào 7 chiếc ghế \( \Rightarrow n\left( \Omega \right) = 5040\)
Gọi \(A\) là biến cố: “Bình vẫn ngồi đúng ghế cũ của mình”, \(B\) là biến cố “Minh vẫn ngồi đúng ghế cũ của mình”.
Vậy \(AB\) là biến cố “Cả Bình và Minh vẫn ngồi đúng ghế cũ của mình”, \(A \cup B\) là biến cố “Có ít nhất một trong hai bạn Bình và Minh vẫn ngồi đúng ghế cũ của mình”.
Xếp chỗ cho Bình ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.
\( \Rightarrow n\left( A \right) = 1.720 = 720 \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\)
Xếp chỗ cho Minh ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 6 bạn còn lại có \(6! = 720\) cách.
\( \Rightarrow n\left( B \right) = 1.720 = 720 \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left(\Omega \right)}} = \frac{{720}}{{5040}} = \frac{1}{7}\)
Xếp chỗ cho cả Bình và Minh ngồi đúng ghế cũ của mình có 1 cách.
Xếp chỗ cho 5 bạn còn lại có \(5! = 120\) cách.
\( \Rightarrow n\left( {AB} \right) = 1.120 = 120 \Rightarrow P\left( {AB} \right) = \frac{{n\left( {AB} \right)}}{{n\left( \Omega \right)}} = \frac{{120}}{{5040}} = \frac{1}{{42}}\)
\( \Rightarrow P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = \frac{1}{7} + \frac{1}{7} - \frac{1}{{42}} = \frac{{11}}{{42}}\)
a) Công thức tính giá trị của ô tô:
- Sau 1 năm: \(800 - 800.4\% = 768\) (triệu đồng)
- Sau 2 năm: \(768 - 768.4\% = 737,28\) (triệu đồng)
b) Công thức tính giá trị của ô tô sau n năm sử dụng: \({S_n} = 800{\left( {1 - 0,04} \right)^n}\)
c) Sau 10 năm, giá trị của ô tô ước tính còn: \({S_{10}} = 800{\left( {1 - 0,04} \right)^{10}} \approx 531,87\) (triệu đồng)
Hàm số c luôn đồng biến, tức là đạo hàm của nó phải luôn không âm, do đó hàm số b là đạo hàm của hàm số c; hàm số b đồng biến trên khoảng mà hàm số a dương và nghịch biến trên khoảng mà hàm số a âm, do đó hàm số a là đạo hàm của hàm số b.
Vậy hàm số a là hàm gia tốc, hàm số b là hàm vận tốc và hàm số c là hàm vị trí của ô tô.
Tham khảo:
Chiều cao của 200 cây keo 3 năm tuổi được thống kê trong bảng sau:
Chiều cao của 200 cây keo 3 năm tuổi sau khi ghép nhóm là:
\(\bar x = \frac{{20.8,65 + 35.8,95 + 60.9,25 + 55.9,55 + 30.9,85}}{{200}} = 9,31\left( m \right)\)
Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\begin{array}{*{20}{c}}{\left[ {9,1;9,4} \right)}\end{array}\).
Do đó: \({u_m} = 9,1;{n_{m - 1}} = 35;{n_m} = 60;{n_{m + 1}} = 55;{u_{m + 1}} - {u_m} = 9,4 - 9,1 = 0,3\)
Mốt của mẫu số liệu ghép nhóm là:
\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 9,1 + \frac{{60 - 35}}{{\left( {60 - 35} \right) + \left( {60 - 55} \right)}}.0,3 = 9,35\)
Vậy chiều cao của 200 cây keo 3 năm tuổi nhiều nhất là 9,35 mét.
Lời giải:
Thời gian người đó đi quãng đường AB:
8 giờ 45 phút - 6 giờ 15 phút = 2 giờ 30 phút = 2,5 giờ
Vận tốc trung bình của ô tô:
$120:2,5=48$ (km/h)
a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:
Số trung bình của số liệu là: \(\bar x \approx 192,41\)
Tứ phân vị thứ nhất là: \({x_5} = 165,6\)
Tứ phân vị thứ hai là: \({x_{10}} = 173\)
Tứ phân vị thứ ba là: \({x_{15}} = 220,7\)
Giá trị xuất hiện nhiều nhất là \({M_O} = 165,9\)
b)
c) Ta có:
• Lượng mưa trung bình trong tháng 8 là:
\(\bar x = \frac{{10.147,5 + 5.202,5 + 3.257,5 + 1.312,5}}{{19}} \approx 188,03\)
• Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\begin{array}{*{20}{l}}{\left[ {120;175} \right)}\end{array}\).
Do đó: \({u_m} = 120;{n_{m - 1}} = 0;{n_m} = 10;{n_{m + 1}} = 5;{u_{m + 1}} - {u_m} = 175 - 120 = 55\)
Mốt của mẫu số liệu ghép nhóm là:
\({M_O} = {u_m} + \frac{{{n_m} - {n_{m - 1}}}}{{\left( {{n_m} - {n_{m - 1}}} \right) + \left( {{n_m} - {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} - {u_m}} \right) = 120 + \frac{{120 - 0}}{{\left( {120 - 0} \right) + \left( {120 - 5} \right)}}.55 \approx 148,09\)
• Gọi \({x_1};{x_2};...;{x_{19}}\) là lượng mưa trong tháng 8 được xếp theo thứ tự không giảm.
Ta có:
\({x_1},...,{x_{10}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}{\left[ {120;175} \right)}\end{array}}\end{array};{x_{11}},...,{x_{15}} \in \begin{array}{*{20}{l}}{\left[ {175;230} \right)}\end{array};{x_{16}},{x_{17}},{x_{18}} \in \begin{array}{*{20}{l}}{\left[ {230;285} \right)}\end{array};{x_{19}} \in \begin{array}{*{20}{l}}{\left[ {285;340} \right)}\end{array}\)
Tứ phân vị thứ hai của dãy số liệu là: \({x_{10}}\)
Ta có: \(n = 19;{n_m} = 10;C = 0;{u_m} = 120;{u_{m + 1}} = 175\)
Do \({x_{10}} \in \begin{array}{*{20}{l}}{\left[ {120;175} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:
\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 120 + \frac{{\frac{{19}}{2} - 0}}{{10}}.\left( {175 - 120} \right) = 172,25\)
Tứ phân vị thứ nhất của dãy số liệu là: \({x_5}\).
Ta có: \(n = 19;{n_m} = 10;C = 0;{u_m} = 120;{u_{m + 1}} = 175\)
Do \({x_5} \in \begin{array}{*{20}{l}}{\left[ {120;175} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:
\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 120 + \frac{{\frac{{19}}{4} - 0}}{{10}}.\left( {175 - 120} \right) = 146,125\)
Tứ phân vị thứ ba của dãy số liệu là: \({x_{16}}\).
Ta có: \(n = 19;{n_j} = 3;C = 10 + 5 = 15;{u_j} = 230;{u_{j + 1}} = 285\)
Do \({x_{16}} \in \begin{array}{*{20}{l}}{\begin{array}{*{20}{l}}{\left[ {230;285} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:
\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 230 + \frac{{\frac{{3.19}}{4} - 15}}{3}.\left( {285 - 230} \right) = 216,25\)
Tham khảo:
Tuổi trung bình của người Việt Nam năm 2020:
\(\bar x = \frac{{7.89 \times 2.5 + 14.68 \times 9.5 + 13.32 \times 19.5 + 53.78 \times 44.5 + 7.66 \times 80}}{{7.89 + 14.68 + 13.32 + 53.78 + 7.66}} = 35.19\).
Tham khảo:
a)
14 là tần số lớn nhất nên mốt thuộc nhóm \(\left[ {3;3.5} \right),\) ta có:
\(j = 3,\;{a_3} = 3,\;{m_3} = 14;\;\;{m_2} = 9;\;\;{m_4} = 11,\;h = 0.5\)
Do đó \({M_0} = 3 + \frac{{14 - 9}}{{\left( {14 - 9} \right) + \left( {14 - 11} \right)}} \times 0.5 = 3.31\).
b)
Tuổi thọ trung bình:
\(\bar x = \frac{{4 \times 2.25 + 9 \times 2.75 + 14 \times 3.25 + 11 \times 3.75 + 7 \times 4.25 + 5 \times 4.75}}{{50}} = 3.48\).