K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2015

Câu hỏi tương tự không có 

30 tháng 12 2015

Đặt a/b=c/d=k

=>a=bk ; b=a/k ; c=dk ; d= c/k

Ta có:(a+2c).(b+d)=(bk+2dk).(a/k+c/k)

                           =k.(b+2d).1/k.(a+c)

                           =(1/k).k.(b+2d).(a+c)=(a+c)(b+2d) =>đpcm

26 tháng 12 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).

Có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

25 tháng 12 2015

\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{b+d}=\frac{a+2c}{b+2d}\Leftrightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)

24 tháng 7 2019

a) Áp dụng tính chất tỉ lệ thức ta được:

\(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-d}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\) \(\left(đpcm\right)\).

Mình chỉ làm câu a) thôi nhé.

Chúc bạn học tốt!

8 tháng 5 2018

a )    \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có : 

\(\frac{b}{d}=\frac{2a}{2c}=\frac{2a+b}{2c+d}=\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\)

\(\Rightarrow\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\left(đpcm\right)\)

b )  \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có : 

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a-c}{b-d}\)

\(\Rightarrow\left(a+2c\right)\left(b-d\right)=\left(a-c\right)\left(b+2d\right)\left(đpcm\right)\)

Chúc bạn học tốt !!! 

8 tháng 5 2018

\(\frac{a}{c}=\frac{b}{d}\)

suy ra\(\frac{2a}{2c}=\frac{b}{d}=\frac{2a+b}{2c+d}\left(1\right)\)

\(\frac{a}{c}=\frac{2b}{2d}=\frac{a-2b}{c-2d}\left(2\right)\)

\(tu\left(1\right)\left(2\right)suyra\)\(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

17 tháng 10 2016

sao ko có tỉ lệ thức nào để cm vậy

17 tháng 3 2018

\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\)

\(\Rightarrow ad+ad+bc=bc+ad+bc\)

\(\Rightarrow2ad+bc=2bc+ad\)

\(\Rightarrow ab+2ad+bc+2cd=ab+2bc+ad+2cd\)

\(\Rightarrow a\left(b+2d\right)+c\left(b+2d\right)=b\left(a+2c\right)+d\left(a+2c\right)\)

\(\Rightarrow\left(a+c\right)\left(b+2d\right)=\left(a+2c\right)\left(b+d\right)\rightarrowđpcm\)

17 tháng 3 2018

DỄ MÀ

(a+2c)(b+d)=ab+ad+2bc+2cd

(a+c)(b+2d)=ab+2ad+bc+2cd

Vì a/b=c/d nên ad=bc

suy ra đpcm

6 tháng 3 2019

Ta có: \(\hept{\begin{cases}VT=\left(a+2c\right)\left(b+d\right)=ab+ad+2bc+2cd\\VP=\left(a+c\right)\left(b+2d\right)=ab+2ad+bc+2cd\end{cases}}\)

Từ \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow VT=VP\Leftrightarrowđpcm\)

22 tháng 9 2019

a)

i) Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{b}{a}=\frac{d}{c}.\)

\(\Rightarrow\frac{b}{a}+1=\frac{d}{c}+1\)

\(\Rightarrow\frac{b}{a}+\frac{a}{a}=\frac{d}{c}+\frac{c}{c}\)

\(\Rightarrow\frac{b+a}{a}=\frac{d+c}{c}.\)

\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\left(đpcm\right).\)

Chúc bạn học tốt!


22 tháng 9 2019

còn ii và phần b nữa

AH
Akai Haruma
Giáo viên
16 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
8 tháng 11 2019

Lời giải:

a)

Đặt $\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt, c=dt$

i. Khi đó:

$\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{bt}{b(t+1)}=\frac{t}{t+1}(1)$

$\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{dt}{d(t+1)}=\frac{t}{t+1}(2)$

Từ $(1);(2)\Rightarrow \frac{a}{a+b}=\frac{c}{c+d}$ (đpcm)

ii.

$\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b(t-1)}{d(t-1)}=\frac{b}{d}(3)$

$\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b(t+1)}{d(t+1)}=\frac{b}{d}(4)$

Từ $(3);(4)\Rightarrow \frac{a-b}{c-d}=\frac{a+b}{c+d}$ (đpcm)

b)

Từ $\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\Rightarrow (2a+b)(c-2d)=(a-2b)(2c+d)$

$\Leftrightarrow 2ac-4ad+bc-2bd=2ac+ad-4bc-2bd$

$\Leftrightarrow 5bc=5ad\Leftrightarrow bc=ad\Leftrightarrow \frac{a}{b}=\frac{c}{d}$

Ta có đpcm.