Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Lấy đối xứng tất cả các điểm trên đồ thị y = sinx (trừ gốc tọa độ) qua trục tung ta được đồ thị y = - sinx
b, Giữ nguyên phần đồ thị nằm bên trái Oy.
Bỏ phần đồ thị bên phải
Lấy đối xứng đồ thị nằm bên trái Oy qua Oy
Đồ thị y = sin|x| là hợp của 2 phần ở trên
c, Tịnh tiến độ thị y = sinx theo vecto \(\overrightarrow{u}=\left(1;0\right)\), hay nói dễ hiểu hơn là dịch chuyển đồ thị y = sinx lên trên 1 đơn vị độ dài
ta được đồ thị y = sinx + 1
Bài 3. Ta có
|sinx|={sinx,sinx≥0−sinx,sinx≤0|sinx|={sinx,sinx≥0−sinx,sinx≤0
Mà sinx < 0 ⇔ x ∈ (π + k2π , 2π + k2π), k ∈ Z nên lấy đối xứng qua trục Ox phần đồ thị của hàm số y = sinx trên các khoảng này còn giữ nguyên phần đồ thị hàm số y = sinx trên các đoạn còn lại ta được đồ thị của hàm số y = IsinxI
a) Tập giá trị của hàm số\(y = \sin x\) là \(\left[ { - 1;1} \right]\)
b) Đồ thị hàm số \(y = \sin x\) nhận O là tâm đối xứng.
Như vậy hàm số \(y = \sin x\) là hàm số lẻ.
c) Bằng cách dịch chuyển đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ { - \pi ;\pi } \right]\) song song với trục hoành sang phải theo đoạn có độ dài \(2\pi \), ta nhận được đồ thị hàm số \(y = \sin x\) trên đoạn \(\left[ {\pi ;3\pi } \right]\)
Như vậy, hàm số \(y = \sin x\) có tuần hoàn .
d) Hàm số \(y = \sin x\) đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k2\pi ;\frac{\pi }{2} + k2\pi } \right)\), nghịch biến trên mỗi khoảng \(\left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } \right)\) với \(k \in Z\)
+ Đồ thị hàm số y = sin x.
+ Ta có:
Vậy từ đồ thị hàm số y = sin x ta có thể suy ra đồ thị hàm số y = |sin x| bằng cách:
- Giữ nguyên phần đồ thị nằm phía trên trục hoành (sin x > 0).
- Lấy đối xứng phần đồ thị nằm phía dưới trục hoành qua trục hoành.
Ta được đồ thị hàm số y = |sin x| là phần nét liền hình phía dưới.
d) Đồ thị hàm số \(y=\cos\left(x+\dfrac{\pi}{6}\right)\) thu được từ đồ thị \(y=\cos x\) bằng cách tịnh tiến song song với trục hoành sang trái một đoạn bằng \(\dfrac{\pi}{6}\)