Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Số các số tự nhiên thỏa mãn yêu cầu bài toán là: A 6 4 = 360 số
Chọn đáp án A.
Xếp một hàng thành 6 ô đánh số từ 1 đến 6 như hình bên: 123456.
Số các chữ số gồm 6 chữ số khác nhau được lập từ 6 chữ số đã cho là 5.5! = 600 số.
Ta tìm số các chữ số mà hai chữ số 0 và 5 đứng cạnh nhau:
· Chữ số 0 và 5 cạnh nhau tại ô số 1 và 2 có 1.4! = 24 số.
· Chữ số 0 và 5 đứng cạnh nhau tại các ô (2;3), (3;4), (4;5), (5;6) có 4.2!.4! = 192 số.
Vậy có tất cả 24 + 192 = 216 số mà chữ số 0 và 5 đứng cạnh nhau.
Do đó, số các số thỏa mãn yêu cầu bài toán là 600 – 216 = 384 số.
Đáp án B
Số cần lập là a b c d e f ¯ , ta có a + b + c − 1 = d + e + f ⇔ 20 = 2 d + e + f ⇔ d + e + f = 10
Với mỗi f ∈ 1 ; 3 ; 5 ⇒ d , e có 4 cách chọn, suy ra a b c d e f ¯ có 4.3 ! = 24 cách chọn
Suy ra có 3.24 = 72 số có thể lập thỏa mãn đề bài
Chọn C
Ta xem 3 chữ số 1; 2; 3 đứng cạnh nhau là một phần tử X.
Chọn ra 3 chữ số còn lại có C 4 3 cách chọn.
Xếp phần tử X và 3 chữ số vừa chọn ta có: 4! Cách.
Các chữ số 1;2;3 trong X có thể hoán vị cho nhau có: 3! Cách.
Vậy có tất cả C 4 3 . 4 ! . 3 ! = 576 (số)
Đáp án A.
Gọi n = a 1 a 2 a 3 a 4 a 5 a 6 ¯ là số tự nhiên gồm 6 chữ số đôi một khác nhau được lập thành từ các chữ số 1, 2, 3, 4, 5, 6 thỏa mãn n < 432000 .
n < 432000 ⇒ a 1 có thể nhận một trong các giá trị 1, 2, 3, 4.
* a 1 ∈ 1,2,3 ⇒ a 2 , a 3 , a 4 , a 5 , a 6 là một hoán vị của 5 chữ số thuộc tập 1,2,3,4,5,6 \ a 1 . Trường hợp này có 3.5! = 360 số.
* a 1 = 4 ⇒ a 2 có thể nhận một trong các giá trị 1, 2, 3.
+ a 2 ∈ 1,2 ⇒ a 3 , a 4 , a 5 , a 6 là một hoán vị của 4 chữ số thuộc tập 1,2,3,4,5,6 \ a 1 , a 2 . Trường hợp này có 2.4 ! = 48 số.
+ a 2 = 3 ⇒ a 3 chỉ có thể nhận giá trị bằng 1. Khi đó a 4 , a 5 , a 6 là một hoán vị của 3 chữ số thuộc tập 2,5,6 . Trường hợp này có 3 ! = 6 số.
Vậy theo quy tắc cộng có tất cả 360 + 48 + 6 = 414 số.