Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 1*4*3*2*1=24 số
b)4*4*3*2*1=96 số
c) 2*4*3*2*1= 48 số
d)=c)
- Mỗi số tự nhiên cần lập là số tự nhiên có không quá 2 chữ số, được lập từ các chữ số 1, 2, 3, 4, 5, 6.
- Để lập được số tự nhiên như vậy, phải thực hiện một hành động trong hai hành động loại trừ nhau sau đây:
- Hành động 1: Từ các chữ số 1, 2, 3, 4, 5, 6, lập số tự nhiên có một chữ số. Có 6 cách để thực hiện hành động này.
- Hành động 2: Từ các chữ số 1, 2, 3, 4, 5, 6, lập số tự nhiên có hai chữ số.
- Vận dụng quy tắc nhân, ta tìm được: Có 62 = 36 cách để thực hiện hành động này.
- Theo quy tắc cộng suy ra số các cách để lập được các số tự nhiên kể trên là
6 + 36 = 42 (cách)
- => Qua trên suy ra từ các chữ số đã cho có thể lập được 42 số tự nhiên bé hơn 100.
Gọi số cần lập là
Vì a khác 1 nên a có 5 cách chọn. Ứng với mỗi cách chọn a ta có: cách chọn b;c;d.
Vậy có số .
chọn A.
Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)
Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp
Trường hợp a=2(b<5):
b có 5 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)
Trường hợp a=1:
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó trường hợp a=1 có 6.5.4.3=360(cách)
Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)
Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi
TH1: Số cần lập có dạng \(520\overline{ab}\)
Chọn a;b có \(A^2_4\) cách
TH2 : Số cần lập có dạng : \(50\overline{abc}\)
Chọn a;b;c có \(A^3_5\) cách
TH3: Số cần lập có dạng : \(\overline{abcde}\left(a\ne5\right)\)
Chọn a: 2 cách
Chọn b;c;d;e có \(A^4_6\) cách
Vậy lập được tất cả \(A^2_4+A^3_5+2A^4_6=792\) số