Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x^2-\frac{x^2}{7}}=\sqrt{\frac{7x^2}{7}-\frac{x^2}{7}}=\sqrt{\frac{6x^2}{7}}=\frac{\sqrt{6x^2}}{\sqrt{7}}=\frac{\sqrt{6x^2}.\sqrt{7}}{\sqrt{7}.\sqrt{7}}=\frac{x\sqrt{6.7}}{7}=\frac{x\sqrt{42}}{7}\)
a) \(A=\frac{1}{2}\sqrt{32}+\sqrt{98}-\frac{1}{6}\sqrt{18}=\frac{1}{2}\sqrt{4^2.2}+\sqrt{7^2.2}-\frac{1}{6}.\sqrt{3^2.2}\)
\(=\frac{1}{2}\sqrt{4^2}.\sqrt{2}+\sqrt{7^2}.\sqrt{2}-\frac{1}{6}.\sqrt{3^2}.\sqrt{2}\)\(=\frac{1}{2}.4\sqrt{2}+7\sqrt{2}-\frac{1}{6}.3.\sqrt{2}\)\(=2.\sqrt{2}+7\sqrt{2}-\frac{1}{2}\sqrt{2}=\left(2+7-\frac{1}{2}\right)\sqrt{2}=\frac{17}{2}\sqrt{2}\)
a)
\(A=\frac{\sqrt{a}+3}{\sqrt{a}-2}-\frac{\sqrt{a}-1}{\sqrt{a}+2}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}+\frac{4\sqrt{a}-4}{4-\sqrt{a}}\)
\(=\frac{a+2\sqrt{a}+3\sqrt{a}+6-a-2\sqrt{a}-\sqrt{a}+2}{a-4}+\frac{4\sqrt{a}-4}{4-a}\)
\(=\frac{a-a+\left(2+3-2-1\right)\sqrt{a}+6+2}{a-4}+\frac{-4\sqrt{a}+4}{a-4}\)
\(=\frac{2\sqrt{a}+8}{a-4}+\frac{-4\sqrt{a}+4}{a-4}\)
\(=\frac{2\sqrt{a}+8-4\sqrt{a}+4}{\left(a-4\right)^2}\)
\(=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
b) thấy A = 9 vào biểu thức , ta có :
\(9=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
\(< =>\frac{9\left(a-4\right)^2}{\left(a-4\right)^2}=\frac{-2\sqrt{a}+12}{\left(a-4\right)^2}\)
\(< =>9\left(a-4\right)^2=-2\sqrt{a}+12\)
\(< =>9.\left(a^2-2a.4+4^2\right)=-2\sqrt{a}+12\)
\(< =>9a^2-72a+144=-2\sqrt{a}+12\)
\(< =>9a^2-72a+2\sqrt{a}=12-144\)
\(< =>\sqrt{a}\left(9\sqrt{a}^3-72\sqrt{a}+2\right)=-132\)
\(\)
TỚI ĐÂY AI BIẾT THÌ GIẢI TIẾP NHA , MÌNH HẾT BIẾT CÁCH LÀM RỒI
\(P=\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{4-6\sqrt{a}}{1-a}-\frac{-3}{\sqrt{a}+1}\)
ĐK : \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)
a) \(P=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{a-1}+\frac{3}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}}{\sqrt{a}-1}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4-6\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a+\sqrt{a}+4-6\sqrt{a}+3\sqrt{a}-3}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a-2\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}=\frac{\sqrt{a}-1}{\sqrt{a}+1}\)
Với \(a=4-2\sqrt{3}\)( tmđk \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))
\(P=\frac{\sqrt{4-2\sqrt{3}}-1}{\sqrt{4-2\sqrt{3}}+1}\)
\(=\frac{\sqrt{3-2\sqrt{3}+1}-1}{\sqrt{3-2\sqrt{3}+1}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}-1}{\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2}+1}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}-1}{\sqrt{\left(\sqrt{3}-1\right)^2}+1}\)
\(=\frac{\left|\sqrt{3}-1\right|-1}{\left|\sqrt{3}-1\right|+1}\)
\(=\frac{\sqrt{3}-1-1}{\sqrt{3}-1+1}=\frac{\sqrt{3}-2}{\sqrt{3}}\)
b) \(P=\frac{\sqrt{a}-1}{\sqrt{a}+1}=\frac{\sqrt{a}+1-2}{\sqrt{a}+1}=1-\frac{2}{\sqrt{a}+1}\)( ĐK \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\))
Để P đạt giá trị nguyên => \(\frac{2}{\sqrt{a}+1}\)nguyên
=> \(2⋮\sqrt{a}+1\)
=> \(\sqrt{a}+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> \(\sqrt{a}\in\left\{0;1\right\}\)< đã loại hai trường hợp âm >
=> \(a\in\left\{0\right\}\)< loại trường hợp a = 1 >
Vậy với a = 0 thì P có giá trị nguyên
Với 1 ≤ x < 2
A = (x + 3)/2
Với x ≥ 2
A = (x + 3)/[2√(x - 1)]
b/ Xét 1 ≤ x < 2
A ≥ (3 + 1)/2 = 2
Xét x ≥ 2
A = 2 + [√(x - 1) - 2]²/[2√(x - 2)] ≥ 2
Kết hợp 2 TH thì min là 2 khi x = 1 hoặc x = 5
a, \(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2015.2017}\)
\(\Rightarrow\) \(2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2015.2017}\)
\(\Rightarrow\) \(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2015}-\frac{1}{2017}\)
\(\Rightarrow\) \(2S=1-\frac{1}{2017}\)
\(\Rightarrow\) \(2S=\frac{2016}{2017}\)
\(\Rightarrow\) \(S=\frac{1008}{2017}\)
\(\dfrac{2ab}{\sqrt{a}-\sqrt{b}}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2ab\left(\sqrt{a}+\sqrt{b}\right)}{a-b}\)
\(\dfrac{1}{\sqrt{x}-\sqrt{y}}=\dfrac{\sqrt{x}+\sqrt{y}}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}+\sqrt{y}}{x-y}\)
\(\dfrac{3}{\sqrt{10}+\sqrt{7}}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{\left(\sqrt{10}+\sqrt{7}\right)\left(\sqrt{10}-\sqrt{7}\right)}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{10-7}=\dfrac{3\left(\sqrt{10}-\sqrt{7}\right)}{3}=\sqrt{10}-\sqrt{7}\)
\(\dfrac{2}{\sqrt{6}-\sqrt{5}}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{\left(\sqrt{6}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{5}\right)}=\dfrac{2\left(\sqrt{6}+\sqrt{5}\right)}{6-5}=2\left(\sqrt{6}+\sqrt{5}\right)\)
Uii em cảm ơn ạ:3