Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
Ta có i1 = 1,8 mm ứng với λ = 0,6μm.
i12 = 3,6 mm => λ12 = 1,2μm.
Ở đây λ12 chỉ chia hết cho λ = 0,4μm.
Khoảng cách ngắn nhất giữa hai vân sáng cùng màu với vân trung tâm là
Dễ thấy 3,6 = 2.1,8 → Vị trí cùng màu vân trung tâm và gần vân trung tâm nhất ứng với vân sáng bậc 2 của λ1
Đáp án D
Khi thực hiện thí nghiệm với bước sóng λ1 thì số khoảng vân là 12, bề rộng trường giao thoa là L = 12i1
Khi thực hiện thí nghiệm với bước sóng λ2, do
Do M, N là các vân tối nên vân sáng gần M, N nhất cách M, N lần lượt là 0,5i2, suy ra số khoảng vân liên tiếp cho vân sáng là
Đáp án D
Theo đề bài: Với bức xạ λ1 thì 10i1 = MN = 20mm → i1 = 2mm.
\(\frac{\iota_1}{\iota_2}=\frac{\text{λ}_1}{\text{λ}_2}=\frac{3}{5}\)\(\rightarrow\iota_2=\frac{10}{3}mm\rightarrow N_2=2.\left[\frac{MN}{2\iota_2}\right]+1=7\)
Cách giải: Đáp án D
Ta có
Vậy tại M lúc sau phải là vị trí của vân tối của λ2.Từ kết quả trên ta suy ra: MN = 10i1 =14i2 .Vậy trên đoạn MN có 15 vân tối.
Theo giả thiết ta có: \(MN=8i_1\)(*)
Mà: \(\frac{i_1}{i_2}=\frac{\lambda_1}{\lambda_2}=\frac{0,6}{0,48}=\frac{5}{4}\Rightarrow i_1=\frac{5}{4}i_2\)
Thay vào (*) ta có: \(MN=8.\frac{5}{4}i_2=10i_2\)
Do đó, số vân sáng có bước sóng 0,48\(\mu m\) quan sát được trên đoạn MN là 11 vân.
Hay quá, cảm ơn bạn. Mình đang bí câu này.