K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2015

Theo giả thiết ta có: \(MN=8i_1\)(*)

Mà: \(\frac{i_1}{i_2}=\frac{\lambda_1}{\lambda_2}=\frac{0,6}{0,48}=\frac{5}{4}\Rightarrow i_1=\frac{5}{4}i_2\)

Thay vào (*) ta có: \(MN=8.\frac{5}{4}i_2=10i_2\)

Do đó, số vân sáng có bước sóng 0,48\(\mu m\) quan sát được trên đoạn MN là 11 vân.

30 tháng 1 2015

Hay quá, cảm ơn bạn. Mình đang bí câu này.

7 tháng 8 2018

19 tháng 6 2019

Chọn B

Ta có i1 = 1,8 mm ứng với λ = 0,6μm.

i12 = 3,6 mm => λ12 = 1,2μm.

Ở đây λ12 chỉ chia hết cho λ = 0,4μm.

15 tháng 10 2019

Khoảng cách ngắn nhất giữa hai vân sáng cùng màu với vân trung tâm là

Dễ thấy 3,6 = 2.1,8 → Vị trí cùng màu vân trung tâm và gần vân trung tâm nhất ứng với vân sáng bậc 2 của λ1

Đáp án D

14 tháng 5 2018

Chọn C

Vậy có 9 vân tối trong miền quan sát.

17 tháng 2 2019

26 tháng 8 2019

Khi thực hiện thí nghiệm với bước sóng λ1 thì số khoảng vân là 12, bề rộng trường giao thoa là L = 12i1

Khi thực hiện thí nghiệm với bước sóng λ2, do 

Do M, N là các vân tối nên vân sáng gần M, N nhất cách M, N lần lượt là 0,5i2, suy ra số khoảng vân liên tiếp cho vân sáng là

Đáp án D

26 tháng 1 2016

Theo đề bài: Với bức xạ λ1 thì 10i1 = MN = 20mm → i1 = 2mm.

\(\frac{\iota_1}{\iota_2}=\frac{\text{λ}_1}{\text{λ}_2}=\frac{3}{5}\)\(\rightarrow\iota_2=\frac{10}{3}mm\rightarrow N_2=2.\left[\frac{MN}{2\iota_2}\right]+1=7\)

 

18 tháng 11 2019

Cách giải: Đáp án D

Ta có

 

Vậy tại M lúc sau phải là vị trí của vân tối của λ2.Từ kết quả trên ta suy ra: MN = 10i1 =14i2 .Vậy trên đoạn MN có 15 vân tối.

4 tháng 10 2017