Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có tồn tại , ta chứng minh như sau :
Đặt S = 2 . 3 . 4...... .2019 . 2020
Xét 2019 số tự nhiên liên tiếp :
S + 2 ; S + 3 ; S + 4 ; ......; S + 2020
Ta có :
S + 2 = 2 . 3 .4 ...... . 2019 . 2020 + 2 = 2 . ( 3 .4 . 5 ..... .2019 . 2020 + 1 ) là hợp số
S + 3 = 2 . 3 . 4 ...... . 2019 . 2020 + 3 = 3 . ( 2 . 4 . 5 ....... .2019 .2020 + 1 ) là hợp số
.......
S + 2020 = 2 . 3 .4 ........ .2019 . 2020 + 2020 = 2020 . ( 2 .3 .4 . 5 ....... 2019 + 1 ) là hợp số
\(\Rightarrow\)ĐPCM
Có tồn tại.
Chứng minh:
Đặt: A = 2 . 3 . 4... 2019. 2020
Xét 2019 số tự nhiên liên tiếp:
A + 2; A + 3; ... ; A + 2020.
Ta có: A + 2 = 2 . 3 . 4... 2019. 2020 + 2 = 2 . ( 3 . 4... 2019. 2020 + 1 ) là hợp số.
A + 3 = 2 . 3 . 4... 2019. 2020 + 3 = 3 . ( 2 . 4... 2019. 2020 + 1 ) là hợp số.
...
A + 2020 = 2 . 3 . 4... 2019. 2020 + 2020 = 2020 . ( 2 . 3. 4... 2019 + 1 ) là hợp số.
Vậy tồn tại dãy số gồm 2019 số tự nhiên liên tiếp là hợp số.
Chắc là có vì hợp số là một số tự nhiên có thể biểu diễn thành tích của hai số tự nhiên khác nhỏ hơn nó hoặc hiểu dễ hơn là số chia hết cho các số khác ngoài 1 và chính nó.
~ Hok tốt ~
P/s : Mik không chắc đâu :VV
Ba số tự nhiên liên tiếp là số thú vị: 33 = 3.11; 34 = 2.17; 35 = 5.7
Gọi 4 số tự nhiên liên tiếp là : \(a_1\) < \(a_2\) < \(a_3\) < \(a_4\)
Xét \(a_1\le4\)=> Khong tồn tại 4 số tự nhiên a, b, c, d đồng thời là số thú vị
Xét \(a_1>4\)
Ta có: \(a_1\) ; \(a_2\) ; \(a_3\) ; \(a_4\) là 4 số tự nhiên liên tiếp
=>Tồn tại i để \(a_i⋮4\); \(i\in\left\{1;2;3;4\right\}\)
khi đó có số b >1 để: \(a_i=4.b\)không là số thú vị
Vậy không tồn tại 4 số tự nhiên liên tiếp bất kì đồng thời là số thú vị.
99999 số tự nhiên liên tiếp alf hợp số bắt đầu từ 10232
tập hợp số tự nhiên không có số lớn nhất => vô hạn
Câu hỏi của Ngân Hoàng Xuân - Toán lớp 8 | Học trực tuyến
a) Phép cộng và phép trừ
b) Phép trừ
c) Phép trừ, phép nhân và phép chia
a) Tập hợp các số hữu tỉ khác 0 tất cả các phép cộng, trừ, nhân , chia luôn thực hiện được
b) Tập hợp các số hữu tỉ dương : phép trừ không phải luôn thực hiện được
Ví dụ: (1/3) - (3/4) kết quả không phải là số hữu tỉ dương
c) Tập hợp các số hữu tỉ âm: phép trừ, nhân và chia không phải luôn luôn thực hiện được
Ví dụ: (-1/3) - (-3/4) kết quả không phải là số hữu tỉ âm
Tập hợp các số hữu tỉ âm: phép trừ, nhân và chia không phải luôn luôn thực hiện được
Ví dụ: (-1/3) - (-3/4) kết quả không phải là số hữu tỉ âm
Có thể
KHÔNG THỂ