Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)
a. Khi \(m=-1\), (1) trở thành:
\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)
Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)
b.
\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) cắt (P) tại 2 điểm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)
\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)
\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)
Phương trình hoành độ giao điểm là:
\(x^2-3x-m^2+1=0\)
\(\text{Δ}=\left(-3\right)^2-4\left(-m^2+1\right)=4m^2-4+9=4m^2+5>0\)
Do đó: (P) luôn cắt (d) tại hai điểm phân biệt
a, Xét hoành độ giao điểm của P và d ta có:
x2 = 3x + m2 - 2
\(\Delta=b^2-4ac=4m^2+1>0\) ∀x
=> d luôn cắt P tại hai điểm phân biệt.
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
a) pt hoành độ giao điểm: \(x^2-mx-8=0\)
\(ac=1.-8=-8< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
b) Áp dụng hệ thức Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=m\left(1\right)\\x_1x_2=\dfrac{c}{a}=-8\left(2\right)\end{matrix}\right.\)
Vì \(x_1x_2=-8< 0\Rightarrow x_1,x_2\) trái dấu
Ta có: \(x_1+\sqrt{x_2}=0\Rightarrow x_1=-\sqrt{x_2}< 0\Rightarrow x_2>0\)
Thế vào (2):\(-x_2\sqrt{x_2}=-8\Rightarrow x_2\sqrt{x_2}=8\Leftrightarrow\left(\sqrt{x_2}\right)^3=8\)
\(\Rightarrow\sqrt{x_2}=2\Rightarrow x_2=4\Rightarrow x_1=-2\Rightarrow x_1+x_2=2=m\)