K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 9 2021

Lời giải:
Giả sử nhóm trên có $m$ số nguyên dương phân biệt thỏa mãn, xếp theo thứ tự tăng dần là $a_1,a_2,....,a_m$

Ta có:

$a_1=\frac{2}{3}.\frac{a_1+a_2+....+a_m}{m}$

$3ma_1=2(a_1+a_2+....+a_m)$

$\geq 2[a_1+(a_1+1)+(a_1+2)+....+(a_1+m-2)+3a_1]$

$=2[(m+2)a_1+\frac{(m-1)(m-2)}{2}]=(2m+4)a_1+(m-1)(m-2)$

$\Rightarrow a_1(m-4)\geq (m-1)(m-2)$

Vì $m\geq 2$ nên $m-4\geq 0$

$a_1=\frac{a_m}{3}< \frac{36}{3}=12$

$\Rightarrow a_1\leq 11$

$\Rightarrow 11(m-4)\geq (m-1)(m-2)$

$\Leftrightarrow m^2-14m+46\leq 0$

$\Leftrightarrow -\sqrt{3}+7\leq m\leq \sqrt{3}+7$

Mà $m$ nguyên nên 6\leq m\leq 8$

Vậy $m_{\max}=8$

Ta sẽ chỉ ra bộ số thỏa mãn:

$(11,12,13,14,15,16,18,33)$

2 tháng 3 2017

12 bạn ơi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! sai thì thôi nhé

24 tháng 12 2021

8,5 nhé

12 tháng 3 2017

a. Ta có:

(Tổng các số n)/n = 56

Theo đề bài, ta có phương trình:

\(\frac{56n-68}{n-1}=55\)

<=> 56n - 68 = 55(n-1)

<=> 56 - 55n = 68 - 55

<=> n = 13

b. Tổng của 13 số nguyên dương đã cho: 56 x 13 = 728

Tổng của 12 số nguyên dương còn lại khi bỏ 68: 728 - 68 = 660 

Mà số nguyên dương bé nhất là 1

=> Tổng của 11 số nguyên dương bé nhất (ko nhất thiết phải khác nhau) là 11.

Số nguyên dương lớn nhất cần tìm là: 660 - 11 = 649

15 tháng 2 2021

A= 1, B= 2, B=3

x= 8, y=5, z=3

Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6

A B C có bội số chung nhỏ nhất là 6.

10 tháng 6 2015

Quên , số giữa + số lớn = 223 + 122

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.4. Chứng minh rằng :...
Đọc tiếp

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.

2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.

3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.

4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.

5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai

a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4 

6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ

7. Cho các số a, b, c thỏa mãn các điều kiện: 

{ a+ b+ c> 0             (1)

{ ab + bc + ca > 0    (2)       

{ abc > 0                    ( 3)

CMR : cả ba số a, b, c đều dương

8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".

9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.

2
11 tháng 7 2018

Này là toán lớp 7

11 tháng 7 2018

Lớp 10 đấy

20 tháng 5 2019

* Giả sử cả 3 pt đều có nghiệm kép hoặc vô nghiệm ta có : 

pt \(x^2-2ax+b=0\) (1) có \(\Delta_1'=\left(-a\right)^2-b=a^2-b\le0\)

pt \(x^2-2bx+c=0\) (2) có \(\Delta_2'=\left(-b\right)^2-c=b^2-c\le0\)

pt \(x^2-2cx+a=0\) (3) có \(\Delta_3'=\left(-c\right)^2-a=c^2-a\le0\)

\(\Rightarrow\)\(\Delta_1'+\Delta_2'+\Delta_3'=\left(a^2+b^2+c^2\right)-\left(a+b+c\right)\le0\) (*) 

Lại có : \(0< a,b,c< 3\)\(\Rightarrow\)\(\hept{\begin{cases}a\left(3-a\right)>0\\b\left(3-b\right)>0\\c\left(3-c\right)>0\end{cases}\Leftrightarrow\hept{\begin{cases}3a>a^2\\3b>b^2\\3c>c^2\end{cases}}}\)

\(\Rightarrow\)\(\left(a^2+b^2+c^2\right)-\left(a+b+c\right)< 3\left(a+b+c\right)-\left(a+b+c\right)=2\left(a+b+c\right)=6>0\)

trái với (*) 

Vậy có ít nhất một phương trình có hai nghiệm phân biệt 

cái kia chưa bt làm -_-