Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Đường thẳng cắt các trục tọa độ tại các điểm A 6 ; 0 ; B 0 ; 3
Phép quay tâm O góc 90 ∘ biến điểm A và B lần lượt thành các điểm A ' 0 ; 6 và B ' − 3 ; 0
Khi đó n A ' B ' → = 2 ; − 1 ⇒ A ' B ' : 2 x − y + 6 = 0.
Lời giải:
a) Gọi phương trình đường thẳng có dạng $y=ax+b$ $(d)$
Vì \(B,C\in (d)\Rightarrow \left\{\begin{matrix} 3=2a+b\\ -3=-4a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=1\\ b=1\end{matrix}\right.\Rightarrow y=x+1\)
Vậy PT đường thẳng chứa cạnh $BC$ có dạng $y=x+1$
b) Tương tự, ta lập được phương trình đường thẳng chứa cạnh $AC$ là \((d_1):y=\frac{2x}{5}-\frac{7}{5}\).
Gọi PT đường cao đi qua $B$ của tam giác $ABC$ là \((d'):y=ax+b\)
Vì \((d')\perp (d_1)\Rightarrow \frac{2}{5}a=-1\Rightarrow a=\frac{-5}{2}\).
Mặt khác \(B\in (d')\Rightarrow 3=\frac{-5}{2}.2+b\Rightarrow b=8\)
\(\Rightarrow (d'):y=\frac{-5x}{2}+8\)
c) Gọi điểm thỏa mãn ĐKĐB là $M(a,b)$
Ta có: \(M\in (\Delta)\Rightarrow 2a+b-3=0\) $(1)$
$M$ cách đều $A,B$ \(\Rightarrow MA^2=MB^2\Rightarrow (a-1)^2+(b+1)^2=(a-2)^2+(b-3)^2\)
\(\Leftrightarrow 2-2a+2b=13-4a-6b\)
\(\Leftrightarrow 11-2a-8b=0(2)\)
Từ \((1);(2)\Rightarrow \left\{\begin{matrix} a=\frac{13}{14}\\ b=\frac{8}{7}\end{matrix}\right.\Rightarrow M\left ( \frac{13}{14};\frac{8}{7} \right )\)
con nếu đề bài cho 1 điểm và phương trình đường thẳng của tam giác muốn tìm phương trình đường cao còn lại vầ các cạnh thj làm thế nào
làm đc chưa bạn...
gọiE là tđ AD
suy ra NA = NH = NMNM
gọi F là tđ AM thì c/m đc KN KM KA KD bằng nhau
vậy AMN cân vuông tại N
Gọi H,I lần lượt là hình chiếu vuông góc của O lên (P) và ∆ .
Ta có d ( O; ∆ ) = OI ≥ OH. Dấu “=” xảy ra khi I = H.
Đường thẳng OH qua O ( 0;0;0 ) nhận n → = ( 1;2;1 ) làm vectơ chỉ phương nên có phương trình là x = t y = 2 t z = t
Mặt phẳng (P) có phương trình: x + 2y + z - 6 = 0.
Từ hai phương trình trên suy ra t = 1 nên H ( 1;2;1 ).
Khi đó (Q) là mặt phẳng chứa d và đi qua H.
Ta có M ( 1;1;2 ) ∈ d , vectơ chỉ phương của d là u → = ( 1;1;-2 ); H M → = ( 0;-1;1 ).
Suy ra vectơ pháp tuyến của (Q) là n → = n → ; H M → = ( -1;-1;-1 ) . Hơn nữa (Q) qua điểm M ( 1;1;2 ) nên (Q) có phương trình là:x + y + z - 4 = 0
Đáp án C
Đáp án B
d cắt Ox,Oy lần lượt tại A − 3 ; 0 ; B 0 ; − 3 2 Qua phép quay tâm O góc quay − 90 ° điểm A và B lần lượt biến thành các điểm A ' 0 ; 3 ; B − 3 2 ; 0 ⇒ A ' B ' : 2 x − y + 3 = 0
Phép vị tự biến đường thẳng thành đường thẳng song song với nó nên d ' : 2 x − y + m = 0
Qua V O ; k A ' = A 1 ⇒ O A 1 → = 5 O A ' → ⇒ A 1 0 ; 15 ⇒ d ' : 2 x − y + 15 = 0
Đáp án D
Ta có V I , 1 2 biến M 0 ; 2 ∈ d thành M ' x ' ; y ' thì I M ' → = 1 2 I M → ⇔ x ' = − 1 2 y ' = 1 2
V I , 1 2 biến đường thẳng d thành đường thẳng đi qua M ' − 1 2 ; 1 2 , có cùng vtpt 1 ; 1 và có phương trình là x + 1 2 + y − 1 2 = 0 ⇔ x + y = 0
Phép quay tâm O góc quay − 45 ° biến điểm N x ; y thuộc đường thẳng x + y = 0 thành điểm
N ' x ' ; y ' ∈ d ' ⇒ x = x ' cos 45 ° − y ' sin 45 ° y = x ' sin 45 ° + y ' cos 45 ° ⇒ x = 2 2 x ' − y ' y = 2 2 x ' + y ' *
Thay (*) vào x + y = 0 ta được x ' = 0 ⇒ d ' : x = 0