K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2017

Gọi D(x; y)

Ta có A D → = x + 2 ; y  và B C → = 4 ; − 3 .

Vì ABCD là hình bình hành nên A D → = B C →  

x + 2 = 4 y = − 3 ⇔ x = 2 y = − 3 ⇒ D 2 ; − 3 .

Chọn A.

7 tháng 11 2019

Đáp án B

a: A(2;4); B(1;0); C(2;2)

vecto AB=(-1;-4)

vecto DC=(2-x;2-y)

Vì ABCD là hình bình hành nên vecto AB=vecto DC

=>2-x=-1 và 2-y=-4

=>x=3 và y=6

c: N đối xứng B qua C

=>x+1=4 và y+0=4

=>x=3 và y=4

20 tháng 12 2021

1, Gọi tọa độ điểm D(x;y)

Ta có:\(\overrightarrow{AB}\left(8;1\right)\)

\(\overrightarrow{DC}\left(1-x;5-y\right)\)

Tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Leftrightarrow1-x=8;5-y=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)

Vậy tọa độ điểm D(-7;4)

20 tháng 12 2021

câu 2 tương tự như câu 1 nha bạn

2 tháng 10 2019

Chọn D.

Ta có: tứ giác ABCD là hình bình hành khi

\(\overrightarrow{AB}=\left(-3;7\right)\)

\(\overrightarrow{DC}=\left(1-x_D;5-y_D\right)\)

Để ABCD là hbh thì 

\(\left\{{}\begin{matrix}1-x_D=-3\\5-y_D=7\end{matrix}\right.\Leftrightarrow D\left(2;-2\right)\)

NV
2 tháng 11 2021

Chắc là A,B,M thẳng hàng chứ?

Do M thuộc Oy nên tọa độ có dạng: \(M\left(0;m\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BA}=\left(2;5\right)\\\overrightarrow{BM}=\left(1;m+2\right)\end{matrix}\right.\)

A, B, M thẳng hàng \(\Rightarrow\overrightarrow{BA}\) cùng phương \(\overrightarrow{BM}\)

\(\Rightarrow\dfrac{1}{2}=\dfrac{m+2}{5}\Rightarrow m=\dfrac{1}{2}\)

\(\Rightarrow M\left(0;\dfrac{1}{2}\right)\)

NV
18 tháng 3 2023

Gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(9;-5\right)\\\overrightarrow{CD}=\left(6-x;1-y\right)\end{matrix}\right.\)

ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}6-x=9\\1-y=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=6\end{matrix}\right.\)

\(\Rightarrow D\left(-3;6\right)\)