Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy tâm vị tự \(I\left(1;-1\right)\) cũng là tâm của đường tròn \(\left(C\right)\). Do đó \(\left(C'\right),\left(C\right)\) đồng tâm
Suy ra tỉ số vị tự \(k=\frac{R'}{R}=\frac{IM}{R}=\frac{5}{4}\) thì \(\left(C'\right)\) đi qua M.
Đường tròn ngoại tiếp tam giác ABC là ảnh của đường tròn (T) qua phép vị tự tâm O tỉ số \(k=2\)
\(\Rightarrow\) Phương trình đường tròn ngoại tiếp tam giác:
\(\left(x-2\right)^2+\left(y+1\right)^2=25\)
(Tọa độ tâm nhân 2 lần và bán kính nhân 2 lần)
Dễ thấy bán kính của (C') bằng 4. Tâm I' của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O, tỉ số \(k=-2,I\) biến thành \(I_1\left(-2;-4\right)\). Qua phép đối xứng qua trục \(Ox\), \(I_1\) biến thành \(I'\left(-2;4\right)\).
Từ đó suy ra phương trình của (C') là \(\left(x+2\right)^2+\left(y-4\right)^2=16\)
Đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R=4\)
Do tâm vị tự trùng tâm đường tròn (tọa độ giống nhau)
\(\Rightarrow\) (C') là đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R'=\left|k\right|.R=4\left|k\right|\)
Phương trình (C'):
\(\left(x-1\right)^2+\left(y+1\right)^2=16k^2\)
Do (C') qua M nên:
\(\left(4-1\right)^2+\left(3+1\right)^2=16k^2\)
\(\Rightarrow k^2=\frac{25}{16}\Rightarrow k=\pm\frac{5}{4}\)