K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 8 2020

Đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R=4\)

Do tâm vị tự trùng tâm đường tròn (tọa độ giống nhau)

\(\Rightarrow\) (C') là đường tròn tâm \(A\left(1;-1\right)\) bán kính \(R'=\left|k\right|.R=4\left|k\right|\)

Phương trình (C'):

\(\left(x-1\right)^2+\left(y+1\right)^2=16k^2\)

Do (C') qua M nên:

\(\left(4-1\right)^2+\left(3+1\right)^2=16k^2\)

\(\Rightarrow k^2=\frac{25}{16}\Rightarrow k=\pm\frac{5}{4}\)

9 tháng 8 2021

Ta thấy tâm vị tự \(I\left(1;-1\right)\) cũng là tâm của đường tròn \(\left(C\right)\). Do đó \(\left(C'\right),\left(C\right)\) đồng tâm

Suy ra tỉ số vị tự \(k=\frac{R'}{R}=\frac{IM}{R}=\frac{5}{4}\) thì \(\left(C'\right)\) đi qua M.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

NV
21 tháng 12 2020

Đường tròn ngoại tiếp tam giác ABC là ảnh của đường tròn (T) qua phép vị tự tâm O tỉ số \(k=2\)

\(\Rightarrow\) Phương trình đường tròn ngoại tiếp tam giác:

\(\left(x-2\right)^2+\left(y+1\right)^2=25\)

(Tọa độ tâm nhân 2 lần và bán kính nhân 2 lần)

31 tháng 3 2017

I' = {V_{(O,3)}}^{} (I) = (3; -9), I'' = {D_{Ox}}^{} (I') = ( 3;9). Đường tròn phải tìm có phương trình (x-3)^{2} + (y-9)^{2} = 36.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

24 tháng 5 2017

Dễ thấy bán kính của (C') bằng 4. Tâm I' của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O, tỉ số \(k=-2,I\) biến thành \(I_1\left(-2;-4\right)\). Qua phép đối xứng qua trục \(Ox\), \(I_1\) biến thành \(I'\left(-2;4\right)\).

Từ đó suy ra phương trình của (C') là \(\left(x+2\right)^2+\left(y-4\right)^2=16\)