K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

Ta có \(M\in\Delta_1\Rightarrow M\left(2t+3;t\right)\)

.

Khoảng cách từ M đến đường thẳng \(\Delta_2\)bằng \(\dfrac{1}{\sqrt{2}}\)

\(\Rightarrow\)\(d\left(M,\Delta_2\right)=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|2t+3+t+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left|3t+4\right|=1\)\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\dfrac{-5}{3}\end{matrix}\right.\)

* \(t=-1\)

\(\Rightarrow M\left(1;-1\right)\)

*\(t=\dfrac{-5}{3}\)

\(\Rightarrow M\left(\dfrac{-1}{3};\dfrac{-5}{3}\right)\)

a: Tọa độ A là:

4x-3y-12=0 và 4x+3y-13=0

=>A(25/8;1/6)

Tọa độ B là:

x=0 và 4x-3y-12=0

=>x=0 và y=-4

Tọa độ C là:

x=0 và 4x+3y-13=0

=>y=13/3

b: A(25/8;1/6); B(0;-4); C(0;13/3)

\(AB=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(-4-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)

\(AC=\sqrt{\left(0-\dfrac{25}{8}\right)^2+\left(\dfrac{13}{3}-\dfrac{1}{6}\right)^2}=\dfrac{125}{24}\left(cm\right)\)

\(BC=\sqrt{0^2+\left(\dfrac{13}{3}+4\right)^2}=\dfrac{25}{3}\)

\(P=\dfrac{1}{2}\left(\dfrac{125}{24}+\dfrac{125}{24}+\dfrac{25}{3}\right)=\dfrac{75}{8}\)

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{-7}{25}\)

=>sin A=24/25

\(S_{ABC}=\dfrac{1}{2}\cdot\dfrac{24}{25}\cdot\dfrac{125}{24}\cdot\dfrac{125}{24}=\dfrac{625}{48}\)

=>r=625/48:75/8=25/18

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

NV
8 tháng 5 2020

\(\Delta_1\) nhận \(\left(2;1\right)\) là 1 vppt; \(\Delta_2\) nhận \(\left(1;m\right)\) là 1 vtpt

a/ Để 2 đường thẳng song song \(\Rightarrow2m=1\Rightarrow m=\frac{1}{2}\)

Khi đó pt \(\Delta_2\) viết lại: \(2x+y+2=0\)

Khoảng cách 2 đường thẳng: \(d=\frac{\left|c_1-c_2\right|}{\sqrt{a^2+b^2}}=\frac{\left|-3-2\right|}{\sqrt{2^2+1^2}}=\sqrt{5}\)

b/Với \(m=2\Rightarrow\Delta_2\) nhận \(\left(1;2\right)\) là 1 vtpt

\(cos\left(\Delta_1;\Delta_2\right)=\frac{\left|2.1+1.2\right|}{\sqrt{2^2+1^2}.\sqrt{1^2+2^2}}=\frac{4}{5}\)

\(\Rightarrow sin\left(\Delta_1;\Delta_2\right)=\sqrt{1-\left(\frac{4}{5}\right)^2}=\frac{3}{5}\)

c/ Chắc là k/c từ gốc O

\(d\left(O;\Delta_1\right)=\frac{\left|2.0+1.0-3\right|}{\sqrt{2^2+1^2}}=\frac{3}{\sqrt{5}}\)

\(d\left(O;\Delta_2\right)=\frac{\left|1.0+m.0+1\right|}{\sqrt{1+m^2}}=\frac{1}{\sqrt{1+m^2}}\)

\(\Rightarrow\frac{1}{\sqrt{1+m^2}}=\frac{6}{\sqrt{5}}\Leftrightarrow1+m^2=\frac{5}{36}\Leftrightarrow m^2=-\frac{29}{36}< 0\)

Không tồn tại m thỏa mãn

d/ I là điểm nào bạn?

8 tháng 5 2020

Mình nhầm ạ. Đấy là H

NV
29 tháng 3 2022

Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)

Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)

Phương trình d có dạng:

\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)

Hệ pt tọa độ giao điểm (C) và d:

\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)

Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)

Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)

Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm

21 tháng 7 2018

Đáp án A

- Do M thuộc d  suy ra M( t; -1-t).

 Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông

(A; B là 2 tiếp điểm).

Do đó:

- Ta có :

- Do đó :  2t2+ 8= 12

d: 4x-3y+5=0

=>VTPT là (4;-3) và (d) đi qua A(1;3)

=>VTCP là (3;4)

PTTS là:

x=1+3t và y=3+4t

=>N(3t+1;4t+3)

NM=1

=>\(\sqrt{\left(3t+1+1\right)^2+\left(4t+3-2\right)^2}=1\)

=>9t^2+12t+4+16t^2+8t+1=1

=>25t^2+20t+4=0

=>(5t+2)^2=0

=>t=-2/5

=>N(-1/5;-3/5)

30 tháng 3 2017

Hỏi đáp Toán

30 tháng 3 2017

Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10

Trả Lời

Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10

Tick nha
19 tháng 2 2023

Gọi `M(2y-5;y) in \Delta`

Ta có: `AM=\sqrt{10}`

`<=>|\vec{AM}|=\sqrt{10}`

`<=>\sqrt{(2y-5-2)^2+(y-1)^2}=\sqrt{10}`

`<=>4y^2-28y+49+y^2-2y+1=10`

`<=>[(y=4),(y=2):}`

  `=>[(M(3;4)),(M(-1;2)):}`