Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng đó có phương trình trên đoạn chắn là
\(\dfrac{x}{a}+\dfrac{y}{b}=1\) (d)
Do d đi qua A(1; 2) ⇒ \(\dfrac{1}{a}+\dfrac{2}{b}=1\) (1)
M,N lần lượt là giao điểm của d vs Ox, Oy
⇒ \(\left\{{}\begin{matrix}OM=\left|a\right|\\ON=\left|b\right|\end{matrix}\right.\); Kết hợp giả thiết
⇒ |b| = 2|a|
⇒ \(\left[{}\begin{matrix}a=\dfrac{b}{2}\\a=\dfrac{-b}{2}\end{matrix}\right.\)
Nếu a = \(\dfrac{b}{2}\), kết hợp (1) ⇒ \(\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)
Phương trình trên đoạn chắn là \(\dfrac{x}{2}+\dfrac{y}{4}=1\)
⇒ Phương trình tổng quát : 2x + y - 4 = 0
Nếu a = \(-\dfrac{b}{2}\) kết hợp (1) không có a,b
Vậy chỉ có 1 đường thẳng thỏa mãn đề bài
Đường thẳng đó có phương trình là
2x + y - 4 = 0
Phương trình đường thẳng d có dạng:
\(y=kx-2k+1\)
Tọa độ A và B có dạng: \(A\left(\dfrac{2k-1}{k};0\right)\) ; \(B\left(0;-2k+1\right)\)
Để A, B nằm trên các tia Ox, Oy \(\Rightarrow\left\{{}\begin{matrix}\dfrac{2k-1}{k}>0\\-2k+1>0\end{matrix}\right.\) \(\Rightarrow k< 0\)
Khi đó ta có: \(S_{OAB}=\dfrac{1}{2}OA.OB=4\Leftrightarrow OA.OB=8\)
\(\Rightarrow\left(\dfrac{2k-1}{k}\right)\left(-2k+1\right)=8\)
\(\Leftrightarrow4k^2-4k+1=-8k\Leftrightarrow4k^2+4k+1=0\Rightarrow k=-\dfrac{1}{2}\)
Phương trình d: \(y=-\dfrac{1}{2}x+2\)