Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình đường thẳng d: 3x + y + 6 = 0
Lấy M(-2;0) thuộc d. Phép vị tự tâm O (0;0) tỉ số k = 2 biến d thành d’//d với d’ có dạng là 3x + y + c = 0 (c 6) và biến M thành M’ thì O M ' → = 2 O M →
⇔ x = 2. − 2 = − 4 y = 2.0 = 0 ⇒ M'(-4; 0)
Vì M thuộc d nên M’ thuộc d’, thay tọa độ M’ vào d’ ta được:
3.(-4) + 0 + c = 0 c = 12 (tm)
Phương trình đường thẳng d’: 3x + y + 12 = 0
Chọn đáp án D
từ pt => đường tròn có tâm I (0;1 ) và bán kính R=2
gọi ( C' ) là ảnh của C qua Q(0,90) => (C') có bán kinh R=2
Q(0,90) ( I ) => I'( x;y ) <=>\(\begin{cases}x=-1\\y=0\end{cases}\)
(C') :(x +1)2 + y2 = 4
Dễ thấy d chứa điểm H(1;1) và OH ⊥ d. Gọi H' là ảnh của H qua phép quay tâm O góc 45 o thì H ′ = ( 0 ; 2 ) . Từ đó suy ra d' phải qua H' và vuông góc với OH'. Vậy phương trình của d' là y = 2 .
Phép quay tâm O(0; 0) góc quay 90 o biến tâm I(3; 0) của (C) thành tâm I’(0; 3) của (C’), bán kính không thay đổi. phương trình (C’) là x 2 + y - 3 2 = 4 ⇒ x 2 + y 2 - 6 y + 5 = 0
Đáp án D