K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2022

a: vect OA=(3;-1)

vecto OB=(4;2)

Vì 3/4<>-1/2

nên O,A,B ko thẳng hàng

b: OABM là hình bình hành

nên vecto OA=vecto MB

=>4-x=3 và 2-y=-1

=>x=1 và y=3

c: Tọa độ I là:

x=(3+4)/2=3,5 và y=(-1+2)/2=0,5

I là trọng tâm của ΔABC

=>\(\left\{{}\begin{matrix}x_A+x_B+x_C=3\cdot x_I\\y_A+y_B+y_C=3\cdot y_I\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3+\left(-1\right)+x_C=3\cdot1=3\\-1+2+y_C=3\cdot1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_C=3-2=1\\y_C=3-1=2\end{matrix}\right.\)

Vậy: C(1;2)

Ta có: A(3;-1); B(-1;2); C(1;2); D(x;y)

=>\(\overrightarrow{AB}=\left(-4;3\right);\overrightarrow{DC}=\left(1-x;2-y\right)\)

ABCD là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{DC}\)

=>\(\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\)

Vậy: D(5;-1)

Tâm O của hình bình hành ABCD sẽ là trung điểm của AC

A(3;-1); C(1;2); O(x;y)

=>\(\left\{{}\begin{matrix}x=\dfrac{3+1}{2}=\dfrac{4}{2}=2\\y=\dfrac{-1+2}{2}=\dfrac{1}{2}\end{matrix}\right.\)

NV
4 tháng 1

Áp dụng công thức trọng tâm:

\(\left\{{}\begin{matrix}x_A+x_B+x_C=3x_I\\y_A+y_B+y_C=3y_I\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=3x_I-\left(x_A+x_B\right)=1\\y_C=3y_I-\left(y_A+y_B\right)=2\end{matrix}\right.\)

\(\Rightarrow C\left(1;2\right)\)

Đặt tọa độ D là \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;3\right)\\\overrightarrow{DC}=\left(1-x;2-y\right)\end{matrix}\right.\)

ABCD là hình bình hành \(\Leftrightarrow\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}1-x=-4\\2-y=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-1\end{matrix}\right.\) \(\Rightarrow D\left(5;-1\right)\)

Tâm O hình bình hành là trung điểm đường chéo AC nên áp dụng công thức trung điểm:

\(\left\{{}\begin{matrix}x_O=\dfrac{x_A+x_C}{2}=2\\y_O=\dfrac{y_A+y_C}{2}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow O\left(2;\dfrac{1}{2}\right)\)

13 tháng 1 2022

tui mới lớp 6

13 tháng 1 2022

mày dám

AH
Akai Haruma
Giáo viên
6 tháng 2

Lời giải:
Gọi $G(a,b)$ là trọng tâm tam giác. Ta có:

$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$

$\Leftrightarrow (1-a, 4-b)+(2-a, -3-b)+(1-a, -2-b)=(0,0)$

$\Leftrightarrow (1-a+2-a+1-a, 4-b-3-b-2-b)=(0,0)$

$\Leftrightarrow (5-3a, -1-3b)=(0,0)$

$\Rightarrow 5-3a=0; -1-3b=0$

$\Rightarrow a=\frac{5}{3}; b=\frac{-1}{3}$

b.

Để $A,B,D$ thẳng hàng thì:

$\overrightarrow{AB}=k\overrightarrow{AD}$ với $k$ là số thực $\neq 0$

$\Leftrightarrow (1,-7)=k(-2, 3m-1)$

$\Leftrightarrow \frac{1}{-2}=\frac{-7}{3m-1}$

$\Rightarrow m=5$

NV
8 tháng 3 2023

Đặt \(C\left(x;y\right)\)

Ta có: \(\left\{{}\begin{matrix}\overrightarrow{OM}=\left(2;4\right)\\\overrightarrow{CM}=\left(2-x;4-y\right)\end{matrix}\right.\)

Do O là trọng tâm tam giác và M là trung điểm AB \(\Rightarrow CM\) là trung tuyến

Theo tính chất trọng tâm:

\(\overrightarrow{CM}=3\overrightarrow{OM}\Rightarrow\left\{{}\begin{matrix}2-x=3.2\\4-y=3.4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-4\\y=-8\end{matrix}\right.\)

\(\Rightarrow C\left(-4;-8\right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

Ta có: \(\overrightarrow {AB}  = \left( {2 - 1;4 - 3} \right) = \left( {1;1} \right),\;\overrightarrow {AC}  = \left( { - 3 - 1;2 - 3} \right) = \left( { - 4; - 1} \right)\)

Hai vectơ này không cùng phương (vì \(\frac{1}{{ - 4}} \ne \frac{1}{{ - 1}}\)).

Do đó các điểm A, B, C không cùng nằm trên một đường thẳng.

Vậy A, B, C là ba đỉnh của một tam giác.

b) Trung điểm M của đoạn thẳng AB có tọa độ là \(\left( {\frac{{1 + 2}}{2};\frac{{3 + 4}}{2}} \right) = \left( {\frac{3}{2};\frac{7}{2}} \right)\)

c) Trọng tâm G của tam giác ABC có tọa độ là \(\left( {\frac{{1 + 2 + \left( { - 3} \right)}}{3};\frac{{3 + 4 + 2}}{3}} \right) = \left( {0;3} \right)\)

d) Để O(0; 0) là trọng tâm của tam giác ABD thì \(\left( {0;0} \right) = \left( {\frac{{{x_A} + {x_B} + {x_D}}}{3};\frac{{{y_A} + {y_B} + {y_D}}}{3}} \right)\)

\( \Leftrightarrow \left( {0;0} \right) = \left( {\frac{{1 + 2 + x}}{3};\frac{{3 + 4 + y}}{3}} \right)\)

\(\begin{array}{l} \Leftrightarrow \left( {0;0} \right) = \left( {1 + 2 + x;3 + 4 + y} \right)\\ \Leftrightarrow \left( {0;0} \right) = \left( {x + 3;y + 7} \right)\\ \Leftrightarrow \left\{ \begin{array}{l}0 = x + 3\\0 = y + 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - 3\\y =  - 7\end{array} \right.\end{array}\)

Vậy tọa độ điểm D là (-3; -7).

a: vecto AB=(2-m;-2)

vecto AC=(-4-m;2)

Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)

=>2-m<>m+4

=>-2m<>2

=>m<>-1

b: Tọa độ trọng tâm là:

\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)

Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)

 

a: vecto AB=(2-m;-2)

vecto AC=(-4-m;2)

Để A,B,C ko thẳng hàng thì \(\dfrac{2-m}{-4-m}< >\dfrac{-2}{2}=-1\)

=>2-m<>m+4

=>-2m<>2

=>m<>-1

b: Tọa độ trọng tâm là:

\(\left\{{}\begin{matrix}x=\dfrac{m+2-4}{3}=\dfrac{m-2}{3}\\y=\dfrac{3+1+5}{3}=3\end{matrix}\right.\)

Để M nằm trên d thì \(\left\{{}\begin{matrix}\dfrac{m-2}{3}=t+1\\5-2t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}t=1\\m-2=3\cdot2=6\end{matrix}\right.\Leftrightarrow m=8\)

 

27 tháng 12 2023

a) Ta có: I là trung điểm AB

\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1+3}{2}=1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{-2+2}{2}=0\end{matrix}\right.\)

\(\Rightarrow I\left(1;0\right)\)

b) Ta có: G là trọng tâm tam giác ABC

\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-1+3+4}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-2+2+1}{3}=\dfrac{1}{3}\end{matrix}\right.\)

\(\Rightarrow G\left(2;\dfrac{1}{3}\right)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Gọi \(C\left( {a;b} \right),D\left( {m,n} \right) \Rightarrow \overrightarrow {IC}  = \left( {a - 4,b - 2} \right)\) và \(\overrightarrow {ID}  = \left( {m - 4,n - 2} \right)\)

Do I là tâm của hình bình hành ABCD nên I là trung điểm AC và BD.

Vậy ta có:\(\overrightarrow {AI}  = \overrightarrow {IC} \)và \(\overrightarrow {BI}  = \overrightarrow {ID} \)

Ta có: \(\overrightarrow {AI}  = \left( {7;1} \right)\) và \(\overrightarrow {BI}  = \left( {5; - 1} \right)\)

Do \(\overrightarrow {AI}  = \overrightarrow {IC}  \Leftrightarrow \left\{ \begin{array}{l}7 = a - 4\\1 = b - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 11\\b = 3\end{array} \right.\) .Vậy \(C\left( {11;3} \right)\)

Do \(\overrightarrow {BI}  = \overrightarrow {ID}  \Leftrightarrow \left\{ \begin{array}{l}5 = m - 4\\ - 1 = n - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 9\\n = 1\end{array} \right.\). Vậy \(D\left( {9;1} \right)\)