Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD: Xếp 10 học sinh thành 1 hàng ngang có:
Gọi A là biến cố: “Hàng ngang không có 2 bạn nữ nào đứng cạnh nhau”
Sắp xếp 5 bạn nam thành 1 hàng có: 5! cách sắp xếp, khi đó có 6 vị trị để xếp 5 bạn nữ xen kẽ để không có hai bạn nữ đứng cạnh nhau (6 vị trí bao gồm 2 vị trí đầu và cuối và 4 vị trí giữa 2 bạn nam)
Cách 1:
n ( Ω ) = 10 !
Bước 1: Xếp 5 bạn nữ có: 5! Cách
Bước 2: Xếp 5 bạn nam vào xen giữa 4 khoảng trống của 5 bạn nữ và hai vị trí đầu hàng. Có hai trường hợp sau
+) TH1: Xếp 4 bạn nam vào 4 khoảng trống giữa 5 bạn nữ, bạn nam còn lại có hai lựa chọn:
Xếp vào hai vị trí đầu hàng. Trường hợp này có A 5 4 . 2 cách
+) TH2:
- Chọn một khoảng trống trong 4 khoảng trống giữa hai bạn nữ để xếp hai bạn nam có C 4 1 cách
- Chọn hai bạn nam trong 5 bạn nam để xếp vào vị trí đó có A 5 2 cách
- Ba khoảng trống còn lại xếp còn lại ba bạn nam còn lại có 3! Cách
Trường hợp này có C 4 1 . A 5 2 . 3 ! cách
Vậy có tất cả 5 ! ( A 5 4 . 2 + C 4 1 . A 5 2 . 3 ! ) cách
Vậy xác suất là: P = 5 ! ( A 5 4 . 2 + C 4 1 . A 5 2 . 3 ! ) 10 ! = 1 42
Cách 2:
n ( Ω ) = 10 !
- Xếp 5 bạn nam có 5! Cách
- Xếp 5 bạn nữ xen vào giữa 4 khoảng trống và 2 vị trí đầu hàng có A 6 5 cách
Vậy 5 ! . A 6 5 cách
Vậy P = 5 ! . A 6 5 10 ! = 1 42
Chọn đáp án B.
Số phần tử của không gian mẫu n(Ω)=10!
Xếp 10 học sinh trên một hàng ngang sao cho 5 học sinh nam xen kẽ 5 học sinh nữ có 2 cách xếp.
Xét trong 2 cách xếp trên các khả năng Hoàng và Lan đứng liền kề nhau:
Xếp 8 học sinh trên một hàng ngang sao cho 4 học sinh nam xen kẽ 4 học sinh nữ có 2 cách xếp.
Với mỗi cách xếp 8 học sinh trên có 9 khoảng trống tạo ra. Với mỗi khoảng trống trên, xếp Hoàng và Lan vào khoảng trống này để được 5 học sinh nam xen kẽ 5 học sinh nữ có 1 cách xếp.
Suy số cách xếp 5 học sinh nam xen kẽ 5 học sinh nữ mà Hoàng và Lan đứng kề nhau là: 2.9
Vậy số phần tử của A là: n =2–2.9=18432.
Xác suất cần tìm là P(A)=n(A)/n(Ω)=18432/10!=8/1575.
+ Phương án B. Tính sai: P(A)=(2.5!5!-2.4!4!7)/10!=1/175.
+ Phương án C. Tính sai: P(A)=(5!5!-4!4!9)/10!=4/1575.
+ Phương án D. Tính sai: P(A)=(2.5!5!- 2.4!4!18)/10!=1/450.
Đáp án B
Đáp án B
Phương pháp: Công thức tính xác suất của biến cố A là: P A = n A n Ω
Cách giải:
Chọn 3 đoàn viên trong 25 đoàn viên nên n Ω = C 25 3 = 2300.
Gọi biến cố A: “Chọn 3 đoàn viên trong đó có 2 nam và 1 nữ”.
Khi đó ta có: n A = C 25 1 . C 10 2 = 675. Vậy xác suất cần tìm là: P A = n A n Ω = 675 2300 = 27 92 .
Đáp án B
Số cách xếp 10 học sinh vào 10 ghế là: 10!
4 bạn nữ chỉ có thể xếp vào các vị trí N1,N2,N3,N4
Nếu Huyền ở vị trí N1 thì có 3! cách xếp 3 bạn nữ còn lại, Quang có 5 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại. Vậy có 3!.5.5! = 3600 cách xếp
Tương tự nếu Huyền ở vị trí N4 cũng có 3600 cách xếp
Nếu Huyền ở vị trí N2 thì có 3! cách xếp 3 bạn nữ còn lại, Quang có 4 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại. Vậy có 3!.4.5! = 2880 cách xếp
Tương tự nếu Huyền ở vị trí N3 cũng có 2880 cách xếp
Vậy có 2(3600 + 2880) = 12960 cách xếp thỏa mãn đề bài
⇒ p = 12960 10 ! = 1 280
Số cách xếp 10 học sinh vào 10 ghế là: 10!
4 bạn nữ chỉ có thể xếp vào các vị trí N1,N2,N3,N4
Nếu Huyền ở vị trí N1 thì có 3! cách xếp 3 bạn nữ còn lại, Quang có 5 cách chọn chỗ ngồi và có 5! cách xếp 5 bạn nam còn lại. Vậy có 3!.4.5! = 2880 cách xếp
Tương tự nếu Huyền ở vị trí N4 cũng có 3600 cách xếp
Nếu Huyền ở vị trí N2 thì có cách xếp 3 bạn nữ còn lại, Quang có 4 cách chọn chỗ ngồi và có cách xếp 5 bạn nam còn lại. Vậy có 2(3600 + 2880)= 12960 cách xếp
Tương tự nếu Huyền ở vị trí N3 cũng có 2880 cách xếp
Vậy có cách xếp thỏa mãn đề bài
⇒ p = 12960 10 ! = 1 280
Đáp án C
Số cách xếp ngẫu nhiên là 10!.
Ta tìm số cách xếp thoả mãn:
Đánh số hàng từ 1 đến 10. Có hai khả năng:
5 nam xếp vị trí lẻ và 5 nữ xếp vị trí chẵn có 5! x 5! = 120 2 .
5 nam xếp vị trí chẵn và 5 nữ xếp vị trí lẻ có 5! x 5! = 120 2 .
Theo quy tắc cộng có 120 2 + 120 2 = 2 × 120 2 cách xếp thoả mãn.
Vậy xác suất cần tính 2 5 ! 2 10 ! = 1 126 .
Đáp án B