Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Phương pháp giải: Lập phương trình mặt phẳng đi qua điểm và vuông góc với đường thẳng. Khi đó, tọa độ giao điểm của d và (P) chính là tọa độ hình chiếu.
Lời giải: VTCP của đường thẳng d
Ta có:
Phương trình mặt phẳng (P) đi qua M, vuông góc với d là :
Đáp án D.
Vì H là hình chiếu vuông góc của A lên đường thẳng ∆
Đáp án C
Hình chiếu vuông góc của M(2;-1;4) lên mặt phẳng (Oxy) là điểm H(2;-1;0).
Chọn D
Ta có x + my + (2m + 1)z – m – 2 = 0 <=> m(y + 2z -1) + x + z - 2 = 0 (*)
Phương trình (*) có nghiệm với
Suy ra (P) luôn đi qua đường thẳng
Đáp Án A
Gọi O là hình chiếu của A lên mp (P)
Ta có ptAO: x = 4 + t y = 6 + t z = 2 + t
⇒ t=-4 ⇒ O(0,2;-2)
Có HB ⊥ AO; HB ⊥ HA ⇒ HB ⊥ (AHO)
⇒ HB ⊥ HO
Ta có B;O cố định
Suy ra H nằm trên đường tròng đường kính OB cố định
⇒ r= 1 2 OB= 6
Đáp án C.
Vtcp của ∆ là: u → = ( 1 ; 2 ; 1 ) . Phương trình mặt phẳng qua M và nhận u → = ( 1 ; 2 ; 1 ) làm vtpt là:
=> tọa độ của H là nghiệm của hệ phương trình