Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Gọi M (x;y;z).
Ta có MA = 2MB nên (x-1)²+ (y-2)²+ (z-3)² = 4 [ x²+ (y-4)²+ (z-5)² ]
Suy ra tập hợp các điểm M thỏa mãn MA = 2MB là mặt cầu (S) có tâm và bán kính
Vì nên (P) không cắt (S).
Do đó, khoảng cách từ điểm M đến mặt phẳng (P): 2x-2y-z+6 = 0 đạt giá trị nhỏ nhất là:
Chọn D
Ta có x + my + (2m + 1)z – m – 2 = 0 <=> m(y + 2z -1) + x + z - 2 = 0 (*)
Phương trình (*) có nghiệm với
Suy ra (P) luôn đi qua đường thẳng
Chọn D
Gọi H là hình chiếu của B trên mặt phẳng (P) khi đó ta có BH là khoảng cách từ điểm B đến mặt phẳng (P). Ta luôn có BH ≤ AB do đó khoảng cách từ B đến mặt phẳng (P) lớn nhất khi H ≡ A, khi đó là véc tơ pháp tuyến của mặt phẳng (P)
Vậy phương trình mặt phẳng (P) đi qua A (-1; 2; 4) và có véc tơ pháp tuyến là x - y + z - 1 = 0
Vậy khoảng cách từ điểm O đến mặt phẳng (P) là:
Đáp án B
Ta có M N : x = t y = - 1 - 2 t z = 2 - t .
Gọi H(t;-1-2t;2-t) là hình chiếu vuông góc của K lên MN
Khi đó
H K → = ( t ; - 1 - 2 t ; - t ) . M N → ( - 1 ; 2 ; 1 ) = 0
⇔ t - 2 - 4 t - t = 0 ⇔ t = - 1 3
H K → = ( t ; - 1 - 2 t ; - t ) . M N → ( - 1 ; 2 ; 1 ) = 0
⇒ H - 1 3 ; - 1 3 ; 7 3 . T a c ó d ( K ; ( P ) ) ≤ K H
dấu “=” xảy ra khi KH ⊥ (P)
Khi đó
n → = K H → = - 1 3 ; - 1 3 ; 1 3 = - 1 3 ( 1 ; 1 ; - 1 )
Đáp án C.