Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi I(a,b,c) là tâm của mặt cầu (S). Ta có:
=> I(1; 1; 1); R = OI = 3
Vậy phương trình của mặt cầu (S) là: ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - 1 ) 2 = 3
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
Đáp án B
Xét ( S ) : x 1 2 + y - 2 2 + z - 3 2 = 16 có tâm I(1;2;3), bán kính R = 4
Gọi O là hình chiếu của I trên (P).
Khi và chỉ khi IO ≡ IHvới H là hình chiếu của I trên AB.
I H → là véc tơ pháp tuyến của mp (P) mà IA = IB => H là trung điểm của AB
Chọn D
Giả sử (S): x2 + y2 + z2 - 2ax - 2by - 2cz + d = 0 (a2 + b2 + c2 - d > 0)
và tâm I (a;b;c) ∈ (P) => a + b - c - 3 = 0 (1)
(S) qua A và O nên
Cộng vế theo vế (1) và (2) ta suy ra b = 2. Từ đó, suy ra I (a; 2; a-1)
Chu vi tam giác OAI bằng 6 + √2 nên OI + OA + AI = 6 + √2
+ Với a = -1 => A (-1; 2; -2) => R = 3. Do đó:
+ Với a = 2 => I (2;2;1) => R = 3. Do đó:
Chọn A
Gọi I (a;b;c)
Ta có IA=IO=R ó hình chiếu của I lên OA là trung điểm của OA.
Theo bài ra ta có:
Gọi B(x;y), ta có \(OA\perp OC\) nên OABC là hình chữ nhật =>\(\overrightarrow{AB}=\overrightarrow{OC}\) \(\Leftrightarrow\begin{cases}x-2=0\\y-0=4\\z-0=0\end{cases}\) \(\Rightarrow B\left(2;4;0\right)\)
Ta có \(\overrightarrow{OB}=\left(2;4;0\right);\overrightarrow{OD}=\left(0;0;4\right);\overrightarrow{CB}=\left(2;0;0\right);\overrightarrow{CD}=\left(0;-4;4\right)\)
Do đó \(\overrightarrow{OB}.\overrightarrow{OD}=0\) và \(\overrightarrow{CB}.\overrightarrow{CD}=0\Rightarrow\widehat{BOD}=\widehat{BCD}=90^0\)
Suy ra mặt cầu đi qua 4 điểm O, B, C, D có tâm I là trung điểm của BD, bán kính R=OI
Ta có \(I\left(1;2;2\right);R=OI=\sqrt{1+2^2+2^2}=3\)
Do đó mặt cầu (S) có phương trình : \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-2\right)^2=9\)