Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: G là trực tâm tam giác MNP
Cách giải: G(x0;y0;z0) là trực tâm tam giác MNP
Mặt phẳng (MNP) có một VTPT
Phương trình (MNP): 2x+3y-z-4=0
Từ (1),(2),(3), suy ra
Đáp án D
Phương pháp giải: Xét đẳng thức vectơ, đưa về hình chiếu của điểm trên mặt phẳng
Lời giải:
Gọi M(a;b;c) thỏa mãn đẳng thức vectơ 2 M A → + M B → + M C → = 0 →
Khi đó S = 2 N A 2 + N B 2 + N C 2 = 2 N A 2 → + N B 2 → + N C 2 → = 2 M N → + M A → 2 + M N → + M B → 2 + M N → + M C → 2
= 4 M N 2 + 2 N M → 2 M A → + M B → + M C → + 2 M A 2 → + M B 2 → + M C 2 →
= 4 M N 2 + 2 M A 2 → + M B 2 → + M C 2 →
Suy ra Smin ó MNmin ó N là hình chiếu của M trên(P) => MN ⊥ (P)
Phương trình đường thẳng MN là
Mà m ∈ mp(P) suy ra t–(1–t)+t+2+2=0 ó t = –1 => N(–1;2;1)
M(1;1;1);N(1;0;-2),P(0;1;-1) ⇒ N P ⇀ = - 1 ; 1 ; 1 ; M P ⇀ = - 1 ; 0 ; - 2
⇒ N P ⇀ ; M P ⇀ = - 2 ; - 3 ; 1
Phương trình mặt phẳng (MNP) là
G là trực tâm tam giác MNP
⇔
⇔
⇔
Chọn đáp án B.