Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)
b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)
\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)
c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)
Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)
Đáp án D
Mặt phẳng (P) có vecto pháp tuyến là: n p → (3; 1; 0)
Vì đường thẳng d vuông góc với mặt phẳng (P) nên đường thẳng d có vecto chỉ phương là: u d → = n p → (3; 1; 0)
Phương trình tham số của đường thẳng d:
Chọn D.
Đáp án A.
Ta có vecto chỉ phương của đường thẳng ∆ là
Vecto pháp tuyến của mặt phẳng β : x + y - 2 z + 1 = 0 là
Vì (α) là mặt phẳng chứa đường thẳng ∆ có phương trình và vuông góc với mặt phẳng β : x + y - 2 z + 1 = 0 nên (α) có một vecto pháp tuyến là:
Gọi d = α ∩ β , suy ra d có vecto chỉ phương là
Giao điểm của đường thẳng ∆ có phương trình và mặt phẳng: β : x + y - 2 z + 1 = 0 là I(3;2;2)
Suy ra phương trình đường thẳng
Vậy A(2;1;1) thuộc đường thẳng d.
Đáp án A
Đường thẳng d đi qua điểm M(-1;0;0) và có một véc-tơ chỉ phương là =(1;2;-1) nên d có phương trình chính tắc là
Đáp án B
Đường thẳng (d) qua điểm M(1;1;2) và vuông góc (P) nên có một véc-tơ chỉ phương là:
Đáp án A.