K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2020

Gọi mặt phẳng là (P) dễ kí hiệu

\(d\left(M;\left(P\right)\right)=\frac{\left|-6+2+2-7\right|}{\sqrt{2^2+2^2+1}}=\frac{9}{3}=3\)

Áp dụng định lý Pitago:

\(R=\sqrt{3^2+4^2}=5\)

Phương trình mặt cầu:

\(\left(x+3\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=25\)

\(\Leftrightarrow x^2+y^2+z^2+6x-2y-4z-11=0\)

26 tháng 5 2017

Hình giải tích trong không gian

NV
10 tháng 5 2020

3.

\(d\left(I;\left(P\right)\right)=\frac{\left|-1-4-2-2\right|}{\sqrt{1^2+2^2+2^2}}=3\)

Áp dụng định lý Pitago:

\(R=\sqrt{5^2+3^2}=\sqrt{34}\)

Pt mặt cầu:

\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=34\)

\(\Leftrightarrow x^2+y^2+z^2+2x-4y+2z-28=0\)

4.

\(\left(\alpha\right)\) nhận \(\left(2;-3;-4\right)\) là 1 vtpt và tất cả các vecto có dạng \(\left(2k;-3k;-4k\right)\) cũng là các vecto pháp tuyến với \(k\ne0\) (bạn tự tìm đáp án phù hợp)

5.

\(\overrightarrow{AB}=\left(3;-6;0\right)\) ; \(\overrightarrow{AC}=\left(5;3;3\right)\)

\(\Rightarrow\left[\overrightarrow{AB};\overrightarrow{AC}\right]=\left(-18;-9;39\right)=-3\left(6;3;-13\right)\)

Mặt phẳng (ABC) nhận \(\left(6;3;-13\right)\) là 1 vtpt

Phương trình:

\(6\left(x+1\right)+3\left(y-2\right)-13\left(z-3\right)=0\)

\(\Leftrightarrow6x+3y-13z+39=0\)

NV
10 tháng 5 2020

1.

\(\overrightarrow{IA}=\left(4;2;6\right)\Rightarrow R^2=IA^2=4^2+2^2+6^2=56\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y+3\right)^2+\left(z+2\right)^2=56\)

Dạng khai triển:

\(x^2+y^2+z^2-2x+6y+4z-42=0\)

2.

\(\overrightarrow{BA}=\left(10;2;-12\right)\Rightarrow R=\frac{AB}{2}=\frac{1}{2}\sqrt{10^2+2^2+12^2}=\sqrt{62}\)

Gọi I là trung điểm AB \(\Rightarrow I\left(1;1;1\right)\)

Pt mặt cầu:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=62\)

\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z-59=0\)

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

NV
21 tháng 4 2020

Bán kính mặt cầu: \(R=\sqrt{1^2+\left(-2\right)^2+1^2+8}=\sqrt{14}\)

Tâm mặt cầu: \(I\left(1;-2;1\right)\)

\(\Rightarrow d\left(I;\left(Q\right)\right)=\sqrt{R^2-\left(\frac{R}{2}\right)^2}=\frac{\sqrt{42}}{2}\)

Do (Q) song song (P) nên pt (Q) có dạng: \(2x+3y+z+d=0\)

Áp dụng công thức khoảng cách:

\(d\left(I;\left(Q\right)\right)=\frac{\left|2-6+1+d\right|}{\sqrt{2^2+3^2+1}}=\frac{\sqrt{42}}{2}\)

\(\Leftrightarrow\left|d-3\right|=7\sqrt{3}\Rightarrow\left[{}\begin{matrix}d=3+7\sqrt{3}\\d=3-7\sqrt{3}\end{matrix}\right.\)

Có 2 mặt phẳng thỏa mãn: \(\left[{}\begin{matrix}2x+3y+z+3+7\sqrt{3}=0\\2x+3y+z+3-7\sqrt{3}=0\end{matrix}\right.\)

14 tháng 7 2018

Chọn D

26 tháng 5 2017

Hình giải tích trong không gian

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

b/ $x^2-4x+20=0$

$\Leftrightarrow (x-2)^2+16=0\Leftrightarrow (x-2)^2=-16< 0$ (vô lý)

Do đó pt vô nghiệm.

c/ $2x^3-3x+1=0$

$\Leftrightarrow 2x^2(x-1)+2x(x-1)-(x-1)=0$

$\Leftrightarrow (x-1)(2x^2+2x-1)=0$

$\Rightarrow x-1=0$ hoặc $2x^2+2x-1=0$

$\Leftrightarrow x=1$ hoặc $x=\frac{-1\pm \sqrt{3}}{2}$