K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2020

Mặt cầu tâm \(I\left(3;-2;1\right)\)

Mặt phẳng (P) nhận \(\left(1;2;2\right)\) là 1 vtpt

Gọi d là đường thẳng qua I và vuông góc (P) \(\Rightarrow\) M là giao điểm của d với mặt cầu (giao điểm nằm giữa I và H với H là giao của d và (P))

Phương trình tham số d: \(\left\{{}\begin{matrix}x=3+t\\y=-2+2t\\z=1+2t\end{matrix}\right.\)

H là giao d và (P) nên tọa độ thỏa mãn:

\(3+t+2\left(-2+2t\right)+2\left(1+2t\right)+11=0\Rightarrow t=-\frac{4}{3}\) \(\Rightarrow H\left(\frac{5}{3};-\frac{14}{3};-\frac{5}{3}\right)\)

M là giao d và (S) nên tọa độ thỏa mãn:

\(\left(3+t\right)^2+\left(-2+2t\right)^2+\left(1+2t\right)^2-6\left(3+t\right)+4\left(-2+2t\right)-2\left(1+2t\right)+5=0\)

\(\Leftrightarrow9t^2-9=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(4;0;3\right)\\M\left(2;-4;-1\right)\end{matrix}\right.\)

M nằm giữa I và H nên \(M\left(2;-4;-1\right)\) là điểm cần tìm

14 tháng 4 2017

28 tháng 10 2017

9 tháng 4 2017

Đáp án C.

16 tháng 9 2018

Mặt (S) cầu có tâm I (1;2;3), R=3.

 mặt phẳng cắt mặt cầu theo một đường tròn

 

Gọi M (a;b;c) là điểm trên mặt cầu sao cho khoảng cách từ M đến (P) lớn nhất.

Khi M thuộc đường thẳng Δ vuông đi qua M và vuông góc với (P)

Vậy M (3;0;4)  a + b + c = 7.

18 tháng 12 2018

Đáp án C.

13 tháng 4 2019

22 tháng 4 2018

Đáp án C.

2 tháng 11 2018

Đáp án D

Mặt cầu (S) có tâm I(2;-1;-2) và có bán kính R=2. Mặt phẳng (P) và mặt cầu (S) có đúng một điểm chung khi và chỉ khi (P) tiếp xúc với (S), từ đó ta được: