Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Đường thẳng ∆ có vecto chỉ phương u → (2; -3; 2)
Đường thẳng d đi qua M(4;3;1) và song song với đường thẳng ∆ nên có vecto chỉ phương là u → (2; -3; 2). Phương trình chính tắc của đường thẳng d là:
Đáp án A
*Gọi (Q) là mặt phẳng chứa d và vuông góc với mặt phẳng (Oxy). Để khoảng cách giữa hai đường thẳng d và ∆ nhỏ nhất thì ∆ chính là giao tuyến của hai mặt phẳng (Oxy) và mp (Q).
* Mặt phẳng (Oxy) có phương trình là z = 0 có VTPT n Oxy → = (0; 0; 1).
Đường thẳng d đi qua A(1;2; -3) và có VTCP u d → = (1; -2; 0)
Suy ra, VTPT của (Q) là n Q → = [ u d → ; n Oxy → ] = (2; 1; 0)
Phương trình mặt phẳng (Q) là: 2(x - 1) + 1(y - 2) + 0(z + 3) = 0
Hay 2x + y -4 =0
* Đường thẳng ∆ cần tìm là giao tuyến của hai mặt phẳng (Oxy) và (Q). Tập hợp các điểm thuộc ∆ là nghiệm hệ phương trình:
* Đặt x = 1 + t thay vào (1) ta được: y = 4 - 2x = 4 - 2(1 + t) = 2 - 2t
Suy ra, phương trình tham số của đường thẳng ∆ là:
Đáp án A
Hai đường thẳng đã cho có hai vecto chỉ phương là u 1 → (-1; 2; a); u 2 → (a; 1; 2)
Để hai đường thẳng sau vuông góc thì
u 1 → . u 2 → = -1.a + 2.1 + a.2 = 0 ⇔ a + 2 = 0 ⇔ a = -2
a: (d) vuông góc (d1)
=>(d): x+2y+c=0
Thay x=-1 và y=4 vào (d),ta được:
c-1+8=0
=>c=-7
=>(d): x+2y-7=0
=>VTPT là (1;2) và (d) đi qua A(-1;4)
=>VTCP là (-2;1) và (d) đi qua A(-1;4)
PTTS là:
x=-1-2t và y=4+t
b: (d1): x=1-2t và y=4+t
=>VTCP là (-2;1)
=>PTTS của (d) là:
x=-4-2t và y=3+t
VTCP là (-2;1)
=>VTPT là (1;2)
Phương trình (d) là:
1(x+4)+2(y-3)=0
=>x+4+2y-6=0
=>x+2y-2=0
c: (d1): x=2-3t và y=2+2t
=>VTCP là (-3;2)
=>VTPT của (d) là (-3;2)
PTTQ của (d) là:
-3(x+1)+2(y-3)=0
=>-3x-3+2y-6=0
=>-3x+2y-9=0
=>VTCP là (2;3)
PTTS là:
x=-1+2t và y=3+3t
Đáp án C
Đường thẳng AB đi qua B(3; -5; 2) và VTCP AB→(2; -3; 2) có phương trình tham số là: